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SECTION I

PROGRAM SUMMARY

The objective of the program is to develop the design criceria and
analyti{ical methods necessary to ensure the damage tolerance of aircraft
attachment lugs. As planned, the program proceeds logically from an exten-
sive cracking data survey and nondestructive inspection (NDI) assessment,
through method development and evaluation, to the preparation of damage

tolerance de.ign criteria for aircraft atcachment lugs.

The program consists of three phases involving seven tasks. Phase I
consists of Tasks I, Il and 1I1; Phase 11 consists of Tasks IV, V and VI;
and Prase IIl consists of Task VII. A roadmap shown in Figure 1-1 summar-
izes the major activities by task, decision points and their interrelation-

ships.

Task I involves a survey c¢f structural cracking data such as the ini-
tial flaw size, shape and location which occur in aircraft attachment lugs.
tources for these data include open literature, available Lockheed data,
and visits te the five Air Force Air Logistics Centers (ALCs). The types
of aircraft structure used to obtain these data include service aircraft,

full-scale test articles, component test articles, and coupon specimens.

Task 11 assesses the current NDI capability to find these flaws or
cracks. This assessment is to be based upon information obtained from the
open literature, available Lockheed NDI data and experience, and Air Force
ALC data. The NDI techniques capable of tinding flaws in attachment lugs
and the flaw sizes these techniques are capable of finding are identified.

Where possible, the probability of detecting a flaw of a particular size

for the NDI technique involved iz specified as well as the coniidence level
assigned to that probability. The results obtained from Tasks ! and 11 will
be used in the formulation of the {nitial flaw assumptions to be developed
in Task VI! as part of the damage tolerant design criteria for attachment

lugs.

Task iil involves three different levels of complexity and degrees
of sophistication for determining stvess intenaity facturs for single
curner cracks za2nd single through-the-thi{ckness cracks {n atreraft

attachment lugs, and the development ol ervack growth analysis capable of
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predicting the growth behavior of these cracks and residual strength of
these lugs. These stress intensity factors and crack growth analyses are
used in Task IV to predict the residual strength and the crack growth behav-
ior for a number of different geometries and test conditions defined in the
experimental program. These predictions are made prior to testing. Two
groups of attachment lug geometries are tested and experimental test data
are generated in Task V. The analytical methods developed in Task II1 are
evaluated by correlating the analytical predictions made in Task IV with

the Group I experimental test data (based upon accuracy and cost) for use in
prediction of Group Il tests. Further evaluation of the selected method is
made by correlating the analytical predictions for the Group II tests

(Task IV) with the experimental test results (Task V). These correlations
indicate what improvements are necessary for the selected analytical method.
The results are presented in parametric format useful to designers and
analysts. Damage tolerant design criteria for aircraft attachment lugs are
developed in Task VII. These criteria are similar in nature to those of
Military Specification MIL-A-83444, and require crack growth analyses by the
types of methods developed and verified in Tasks IXI through VI. The cri-
teria include initial flaw assumptions (e.g., initial flaw type, shape,
size, etc.) based upon the cracking data survey of Task I, NDI assessment

of Task IT, and crack initiation tests of Task V.

As Figure 1-1 shows, the following sequence of final report volumes is
generated under this project:

Volume I. Crackiug Data Survey and NDI Assessment for Attachment
Lugs

Volume II. Crack Growth Analysis Methods for Attachment Lugs

Volume 111. Experimental Evaluation of Crack Growth Analysis Methods
for Attachmeni Lugs

Volume IV. Tabulated Test Data for Attachment Lugs

Volume V. Exe~rutive Summary and Damage Tolerance Criteria Recommen-
dations for Attachment Lugs

Volume VI. User's Manual for "LUGRO" Computer Program to Predict
Crack Growth in Attachment Lugs

This 1s Volume IT on Crack Growth Analysis Methods for Attachment Lugs,
which is the result of Task TII efforts. 1t contains the developed analyt-
ical methodulogies for determininy the stress intensity factors for single
corner cracks and single through-the-thickness cracks in aircraft attachment

lugs, and for predicting the growth behavior of these cracks.
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SECTION II

INTRODUCTION

In aircraft structures, lug-type joints are frequently used to connect
ma)~r structural components or in linkage structure. The lug joint is norm-
ally connected by a single bolt or pin, creating a simple joint that is easy
to assemble and disassemble, Since ¢lamping of the joint is not normally
allowed, the lug can act as a pivot. But the elastic gross section stress
concentration for normal lugs is very high, resulting in a relatively short
crack initiation and crack growth life. To improve the crack initiation
life, the stress concentration factor can be effectively reduced by cold
working the hole or by installing an interference-fit bushing prior to pin
fitting. To minimize the wear in either the lug or the pin, most aircraft

lugs have an oil fitting and/or lubrication provisions.

During the past decade, the influence of fracture mechanics on the
design, manufacture, and maintenance of aircraft has steadily increased.
Also, nondestructive inspection techniques have been improved significantly,
However, some cracks still cannot be detected during routine maintenance
inspection. Under service loading, such cracks will grow and fracture can
occur if the crack length reaches a critical dimension before it can be
detected and the part repaired or replaced. To assure aircraft safety, the
U. S. Air Force has impos~d damage-tnlerance requirements (MIL-A-83444)[1]
which include the predictio. of fatigue crack growth life and residual
strength of the structure by assuming that small initial flaws exist at
critical locations of new structure due to various material and manufactur-
ing and process operations. Assumptions regarding the initial size, shape,
location, multiplicity, etc. for these flaws are specified in MIL-A-83444,
However, these assumptions were established primarily for skin-stringer

structure and may not be applicable for attachment lugs.

Attachment lugs are some of the most fracture critical components in
aircraft structure, and the consequences of a structural lug failure can be
very severe. Therefore, it is necessary to develop damage tolerance design
requirements, similar to MIL-A-83444, for attachment lugs to ensure the
safety of aircraft. The development of these damage tolerance requirements

will be based upon actual cracking data for attachment lugs and current
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nondestructive inspection capability. Once the damage tolerance design
requirements for aircraft attachment lugs are established, the analytical
methods necessary to satisfy the crack growth and residual strength require-
ments are needed. 1In particular, stress intensity factors for cracks in
attachment lugs are needed. Such stress intensity factors will depend upon
the complexities of structural configuration, crack geometry, applied loads,

and the fit between the pin and the lug.

There are a number of different methods for determining the stress
intensity factors, K, for cracks in aircraft attachment lugs. Schijve and
Hoeymakers {2]and Wanhill [3 derived empirical K-solutions from the growth
rate data for through cracks under constant amplitude loading using a back-
tracking method such as that proposed by James and Anderson(4]. Analytic-
ally, Liu and Kan [ 5]and Kirkby and Rooke f6] used the simple compounded solu-
tion method which involves superimposing known solutions, such as in Refer-
ence[7]to estimate the stress intensity factors. Aberson and Anderson [8]
used a special crack-tip singularity element to compute the stress intensity
factors for a crack in a nonsymmetrical aft lug of an engine pylon. Pian
et al[9] usedthe hybrid finite element method to compute the K-values for
cracks oriented in various angles from the axial direction of straight lugs.
Impellizzeri and Rich [10]modified the exact weight function derived by
Bueckner [11], for an edge crack in a semi-infinite plate, to include a series
of geometry correction factors. Then they computed the K-values using the
weight function method. Except for Reference[8],all of these works made the
assumption that the assumed or computed pin-bearing pressure distribution for
an uncracked case remains unchanged even after the crack has initiated and
propagated. Based on the parametric study conducted in Reference[9],it was
found that, for any given crack length, the difference in the stress inten-
sity factor computed using the uniform and cosine pin-bearing pressure dis-
tributions was as much as 30 percent. Therefore, it is salient that the
correct representation of the pin-bearing pressure distribution during the
crack growth process is essential to the calculation of accurate stress
intensity factors. An analysis procedure using a finite element method with
inclusion of a crack-tip singularity element for analyzing cracks in both
straight and tapered lugs having a neat fit between the pin and the hole(12]
has shown that {t can accurately account for the change of pin-bearing

pressure distribution with the change in =rack length, and provide stress
intensity factors which are in excellent agreement with the available data.
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This approach was extended for the development of analytical methoadclogy
for analyzing cracks in attachment lugs with and without the presence of
residual stress resulting from the installation of the interference-fit
bushing [13]. The analytical procedure developed for computing the stress
intensity factors for cracks in attachment lugs having residual stresszs
around the hole prior to the application of pin-bearing loads consists: of
two major steps. First, the effective unflawed stress distribution ua the
prospective crack surface was obtained by superimposing the residua’ hoop
stresses due to the installation of an interference~fit bushing on the
applied tangential stresses obtained due to the application of a 1,un loading.
Sccond, a through crack was introduced in this stress field by removing the
tractions on the crack faces and computing the corresponding stvuss intensity

factor using the weight function approach.

This report describes the analytical methods and procedures for obtain-~
ing the stress intensity factors and for predicting the fatigue crack growth
life for cracks at attachment lugs with and without the presence of residual
stresses. Two types of attachment lugs are considered in the analysis. They
are: (1) straight-shank male attachment lugs and (2) tapered male attachment
lugs as shown in Figure 2-1. Three ditferent outer~to-inner radius ratios,
Ro/Ri = 1.50, 2.25 and 3.0, are considered in the analysis. The straight
attachment lugs are subjected to axital pin loading only, while the rtapered
attachment lugs are subjected to axial, off-axis and rransverse pin loadings.
Types of cracks considered include single through-the~thickness crack aad

single corner crack as depicted in Fignre 2-2.

For through-the-thickness cracks, the methods developed and described
in this report include: (1) the compounding solution method which involves
the superposition of known solutions for idealized cracked geometries;

(2) the two-dimensional cracked finite element methed which is capable ot
characterizing the crack-tip stress singularity internally; and (3) the
weipght function (also kaown as Creen's function) method which eomputes the
stress intensity factors from the knowledge of the unflawed stress distribu-
tion and the superposition technique. For corner cracks, the methods devel-
oped and described include: (1) the one paraseter campounding method which
assumes a constant crack shape and estimates the stress intensity factor at
only one location on the crack front (at lug surface); (2) a two-dimensional

appraach which estimates the stress intensity tactors along the crack frout
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of a corner crack ty modifying the Green's function for through-the-thickness
crack solutions with appropriate hole curvature, flaw shape, front free
surface and back surface correction factors; (3) the rigorous three-
dimensional cracked finite element method, which was developed using a

hybrid displacement finite element procedure.

After the stress intensity factor is determined as a function of crack
length for a particular lug and loading condition, its range (AK) can be
computed for the Nth cycle in a given load spectrum. Then a numerical inte-
gration of da/dN versus AK relation can be carried out to predict the crack
growth characteristics. An automated computer program was developed utiliz-
ing the state-of-the-art fracture mechanics methodologies for the prediction
of fatigue crack growth history under fatigue loading. The program is cap-
able of predicting the crack growth behavior of single corner cracks and
single through-the-thickness cracks in attachment lugs using block-by-block
integration technique. In the case of corner crack problems, a transitional
crack growth criterion from part-through crack to through-the-thickness
crack was also developed and incorporated. Several load-interaction models
were also included in the crack growth analysis program for spectrum load-

‘ ings.

. The prediction methods presented in this volume of the report are to be
evaluated against fatigue crack growth test results. The test program con-
sists of two parts. Group I tests consist of straight-shank male attachment
lugs. Both constant amplitude and block spectrum loadings are considered in
this group. Variational tests, such as different thickness and with residual
stresses due to interference-fit bushings, are also included in Group 1 test-
ing. Croup Il tests, performed later, encompass several additional lug

L cont igurations (tapered, dogbone, clevis and a simulated wing-pylon attach lug)

and include both axial and off-axis loadines.

The stress intensity factor formulations prepared for Croup 1 straight-
shank male attachment lugs are described in Section Ill. A draft of Section
11l was completed prior to Group !l testing. After Crap!l testing, these
formulations are evaluated. Based on this evaluation, a stress intensity
factor estimation methodology is selected for Croup 1! testing. Section IV
describes such a selected methodology for tapered attachment lugs. The

crack growth prediction method which employs these stress intensity factor

solutions is presented in Section V.

10
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SECTTION III

STRESS INTENSITY FACTORS FOR STRAIGHT ATTACHMENT LUGS

In this section, the analytical methodologies required for the develop-
ment of stress intensity factors for cracks in simple straight-shank male
attachment lugs are described. The stress ‘ntensity factor solutions are
obtained for single through-the-thickuess cracks and single quarter-
elliptical corner cracks in attachment lugs. As mentioned previously, the

following methods are used for through-the-thickness and corner cracks.
For through-the~thickness crack problems:

(1) Simple compounding method
(2) Two-dimensional cracked finite element procedure

(3) Weight function or Green's function method
For corner crack problems:

(1) Simple one parameter compounding method
(2) Two-dimensional Green's function solution modification

(3) Rigorous three-dimensional cracked finite element procedure

This section also describes the method for developing the stress in-
tensity factor for problems with residual stresses (due to the installation
of interference-fit bushings). A stress analysis of unflawed straight
attachment lugs was alsc performed and is presented here. Note that all
the specimens tested in the Group I test program are straight attachment

lugs and the methodologies described in this section are evaluated using

Group I test results.

1. STHRESSES IN AN UNFLAWED STRAICGHT ATTACHMENT LUC

A primary item of interest in the analysis of cracked attachment lugs
is the stress distribution in the uncracked state. This {s important for at
least three reasons. The location of the peak tangential stress determines
the location of the most criticai crack. The stress intensity factor for a
very small crack is proportioaal to the stress concentration factor value.
Finally, the weight functior mathod of estimating stress intensity factors

requires the stresses on the .. spective crack surface in the uncracked lug.

11 (
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The conventional displacement finite element method was used to obtain,
for an uncracked straight lug, (1) the tangential stresses along the edge of
the hole, (2) the stress distribution on the prospective crack surface, and
(3) the pin-bearing pressure distribution along the contact surface between

the pin and the lug. The rigidity ratio, E , /E, , is assumed tc be 3.0 in

pin’ "lug

the present analysis.

Figure 3-1 shows a typical model used in the analysis. Due to symmetry,
only the upper half of the lug was modeled. The lug and the pin were rep-
resented by a set of constant-strain triangular and quadrilateral elements..
To load the model, a concentrated force was applied at the center of the pin
and reacted at the other end of the lug. Spring elements (S) were used to
connect the pin and lug at each pair of nodes having identical nodal coor-
dinates all around the periphery. The area of contact was determined itera-
tively by assigning a very high stiffness to spring elements which were in
compression and a very low stiffness (essentially zero) to spring elements

which were in tension. A neat-fit and no friction assumptions were made for

the pin-to-lug assembly.

The calculated tangential stresses (normalized by the average bearing
stress) along the edge cf the hole for a pin loading applied in the 0° directinn
are shown in Figure 3-2 for ROIRi ratios of 1.50, 2.25 and 3.00. As antici-
pated, the maximum tangential stresses are located at about 90° away from

the axis of the lug, and the minimum stresses (small amount in compression)

are located at the 180° location.

The tangential stresses for pin loading applied in axial compression
(6 = 180°) are shown in Figure 3-3. As can be seen from this figure, the
resulting stresses at # = :900 are small tensile stresses. Thus, reversing
the loading direction does not cause a stress reversal at the critical 90°

location. Furthermore, the tensile stresses produced are relatively small.

The unflaved elastic stress distributions on the prospective crack
plane for axial tension applied in the 0° direction are presented in Figure
3-4. Thesc values are also tabulated in Table 3-1. The tangential stresses
along the x-axi{s shown in the figure are normalired by the average bearing
stress. It is clear that the gradient of the stress distribution close to
the edge of the hole iz very steep, especially for a lug having a smaller
ROIRi ratio. The corresponding elastic stress concentration factors at the

edge of the hole.o;a‘lost. are plotted in Figure )-S5, The equation of the

12
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Figure 3-5. Elastic Stress Concentration Factors
for Straight Attachment lugs
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logarithmic straight line shown in this figure fits the computed values with-

in 0.5 percent, as shown in the accompanying table.

The computed pin-bearing pressure distributions along the contact sur-
face are shown in Figure 3-6. The figure shows that the shape of the dis-
tribution is close to uniform at the central portion of the contact surface.
As the Ro/Ri ratio increases, the pressure decreases near 8 = + 900 but

. 0
increases near & = 0 .

2. STRESS INTENSITY FACTORS FOR THROUGH-THE-THICKNESS CRACKS

The development of stress intensity factor solutions for single through-
the-thickness cracks in attachment lugs by various methods are described in
this subsection. Also included in this subsection are the methods for analyz-
ing attachment lugs with interference-fit bushings and elasto-plastic analy-

sis for analyzing lugs which are loaded above yield.

2.1 COMPOUNDING METHOD APPROXIMATIONS

Stress intensity factors for an axially-loaded straight lug with a
single through-the-thickness crack can be estimated by the compounding of
known K solutions. The compounding method has been used for crack growth

analysis of complex structure [14].

As Figure 3-7 shows, the actual lug configuration is approximated as an

infinite strip of width ZRO containing a central hole of radius R A

single through-the-thickness crack is assumed to be present at 6 = 9;b to
the axis of the lug. The length of the crack is ayy measured from the edge
of the hole. The total pin load P 1is assumed to result from a uniform
distribution of radial pressure from § = -67.5° to 67.50, and to be reacted

by a remote uniform stress o, = P/(ZROB), where B is the lug thickness.

The stress intensity factor for the configuration shown in Figure 3-7
can be approximated by combining a number of known K solutions. The basic
solutions are for cracks emanating from holes in infinite plates. Multi-
plicative correction factors are used to modify these infinite plate

solutions to account for the effects of finite width.

19
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2.1.1 Cracks at Holes in Infinite Plates - The loading shown in Figure 3-7

consists of pin loading in one direction and remote loading in the other.

Tweed and Rooke [15] have obtained the solution for a crack emanating from
a circular hole in an infinite plate subjected to remote loading. This is
Case 31 in the compendium given in Appendix A. The formula for K fics

31
Tweed and Rooke's solution within 0.5 percent.

The general solution for the same geometry subjected to arbitrary radial
loading at the hole is given in Reference(16]. Case 35 in Appendix A gives an
equation which closely fits the special case of uniform radial pressure ap-
plied from 0 =-67.5° to 0= 67.5°, and from (180° - 6) = -67.5° to
(180° - 9) = 67.5°.

2,1.2 Symmetrical Line Cracks in Strips - The solution for a symmetrical

line crack of length Zao in an infinite strip of width 2b wunder uniform
tension stress g, is well known. It is given in Appendix A as Case 21.
The function tbzl()\o) is called the width correction factor, because it is
applied multiplicatively to the infinite-plate K solution to give the

correct solution for the strip.

Case 22 in Appendix A gives an approximate solution for the symmetrically-
cracked strip subjected to concentrated splitting forces P applied to both
surfaces of the crack at the centeriine. This approximation is derived by che

similarity method from three known K solutions, as follows:

Figure 3-8 shows the four similar configurations. In all four cases the
crack lengths are the same and the shear stresses vanish along the lines
x = +b.  The unknown solution is Kzz; the solutions for the other three cases
shown are known in closed form. K is the well-known solution for periodic

19
collinear cracks subjected to uniform loading [17]:

/2b .
K‘() = 5\/7780 L E.—o tan ETY (1)
The solution K for periodic collinear cracks subjected to certral

20
splitting forces on the crack surfaces is given by Tada, et al [18].
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K = P I//A tan ﬂ—a— naOIZb (2)
20 B \/7;;‘0 ‘n’ao 2b sin 2ﬂa°72b)

Notice in Figure 3-8 that Cases 21 and 22 are identical geometries, as
are Cases 19 and 20. Furthermore, Cases 20 and 22 are identical in the ap-

plied loadings, as are Cases 19 and 21.

Thus, the correction factor approach can be applied in two alternative
ways to estimate K22. The ratio (K21/K19), a correction factor to account
for the difference between a finite-width strip and a periodic crack array,
can be multiplied times KZO’ the solution for the periodic crack array with
the Case 22 loading condition. Alternatively, the ratio (K20/K19)’ a correc-
tion factor to account for the difference between remote loading and point
loading on the crack line, can be multiplied times KZI’ the solution for
remote loading of the Case 22 geometry. Either way, the resulting equation
for K22 is the same:

K51 %90

K o212 (3)
22 K19

2.1.3 Effect of Eccentricity - The crack in the lug is eccentrically located,

so eccentricity must be considered. 1sida [19] has obtained the stress in-
tensity solution for an unsymmetrical crack in a strip under uniform tension.
Equations are given in Appendix A, Case 26, which fit Isida's numerical

results within about 3 percent (within 1 percent for a/b“ € 0.6). There are

two stress intensity formulas, ng) for the crack tip nearest the edge and
ng) for the crack tip farthesc from the edge. For the symmetrical crack

both formulas reduce to the equation for KZI'

Case 27 in Appendix A gives an approximate solution for the unsymmetri-
cal crack subjected to splitting forces on the crack surfaces at the strip
® centerline. This solution i{s obtained by the Similarity Method from the five
known K solutions show.. in Figure 3-9. (The solutions for Cases 12 and 13
are well known and are given in Reference [18].) There are two eccentricities
in Case 27: the crack is not centered on the strip nenterline, and the load

® is not centered on the crack centerline. HRemove both eccentricicties and

Case 22 is obtained.
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‘%ﬁ The crack is not centered on the strip in Case 26. Remove this eccentri-
city and Case 21 is obtained. Therefore, the correction factor to account

for eccentricity between the crack and the strip is the ratio K26/K21'

The load {s not centered on the crnck in Case 13. HRemove this eccentri-
city and Case 12 is obtained. Therefore, the correction factor to account

for eccentricity between the loading po.at and the c¢rack is the ratio K13/K12

When both correction factors are applied to K22 the approximate formula

for K27, given in Appendix A, is obtained:

(N) (N)
K K
21 12

2.1.4 Cracks at Holes in Strips - The stress intensity solutions for cracks

at holes in infinite plates and for line cracks in strips can be combined to
obtain approximate K formulas for cracks at holes in strips. The resulting

formulas can be superimposed to estimate K for a pin-loaded lug with a

crack.

‘ Case 41 in Appendix A gives an approximate solution for a unifermly
loaded strip with a crack emanating from a central hole. Referring to
Figure 3-10, one would expect the solution for KAl to be approximated by

the product Kn KZﬁlKll'

This product, however, does not account for the iateraction between the
hole and the edges of the strip. The gross area stress concentration factor
given by Peterson [20] for a center hole in a strip can be approximated by

the following formula:

14 2 2
kt(r/b) = 3 sec (53) = 3"21 (r/b) (5)

As the crack length a, approaches zero, ‘an has a known asymptotic

solution in terms of the stress couceantration factor, i.e.

51 2
lim (K, ) - kt (z/b) 5 ‘-'@2‘ {(z/b) K]! (6)

4l
al/z .0
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To satisfy Equation(6), a hole-strip width correction factor ¢>21 (ch)

must be included, so that the approximate solution for Case 41 is

K., K (
3 726 (
Klol = -—KTI—— ¢21 (l'/b) (8) :

Case 44 {n Appendix A is an approximate solution for a strip with a ,
crack at a central hole, loaded symmetrically at the hole. This solution is . i
derived by the same approach used to derive Kal' In this case, however,
the gross area stress concentration factor for the uncracked case is not .
known. Figure 3-5, obtained by finite element analysis, could have been used
here to estimate the required kt’ but to do so would have compromised the {
independence of the solutions generated by the compounding and finite element
methods. Based on engineering judgment, therefore,(b21 (r/b) is appended to

product solution obtained from Figure 3-11 to approximate Kaa' just as was

cemmm. - -

} done for Case 41. Thus, KAA is approximated by the equation
K,. K
35 27
KMo = 'Tl—B'— QZI (x/b) (9)

2.1.5 Cracked Lug - The final step in the derivation of a compounding
method stress intensity factor for the pin-loaded straight lug i{s a simple
superposition. As demonstrated in Figure 3-12, the result of superimposing

Caes 41 and 44 is identical to the result of superimposing the lug approxi-

L e

mation in Figure )-7 with itself (orieated upside-down and backwards). Thus

, 1

;. Kius = 3 (‘41 . x“) (10) l

- Equation (10) was used to compute the stress intensity factors for |
2 solki ratios of 1.50, 2.29 and ).0, and the results are tabulated in

Table 3-2. i

' !

2.2  TWO-DIMENSIONAL CRACKED FINITE ELEMENT METHOD

Because of the ease with which the finite-element method handles com-
‘ plex peometries and bouncary conditions, this method has been used exten- '

sively to study fracture in complex structures. Two special crack-tip

28
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singularity elements, usually referved to as cracked elements, developed at
Lockheed-Georgia [8] have brought the power and flexibility of the finite-
element method to bear much more effectively on fracture mechanics problems.
This method has been used to analyze a crack in an unsymmetric lug of a

C-5 engine pylon [8]. It has been modified slightly to accurately account
for the change in pin-bearing pressure distribution for the change in crack
length, The following discussion describes this method as it was used in

the calculation of stress intensity factors for cracks at attachment lugs.

Figure 3-13 shows a typical finite element model used for a single crack
emanating from a straight attachment lug. A 10-node high-order singularity
element [8) was used at the crack tip region for computing the stress inten-
sity factors. The remainder of the finite element modeling details was
identical to those described in the stress analysis section for the uncracked
lug, including the iterative determination of the contact area. The solution
was obtained for several outer-to-inner radius ratios, Ro/Ri’ and for a
succession of cracks having normalized lengths, c/(Ro - Ri) ranging from 0.1
to 0.9. As in the case of stress analysis, the rigidity ratio, Epin/Elug’
of 3.0 is assumed in the fracture analysis.

The pin-bearing pressure distributions obtained for single cracks ema-
nating from attachment lugs loaded by neat-fit pins are presented in Figures
3-14 through 3~16. These figures show the effect of crack length on the pin-
bearing pressure distributions for a straight lug having Ro/Ri ratios of
1.5, 2.25 and 3,00, respectively. When there is no crack, the distribution
is close to uniform at the central portion of the contact surface, unlike
the cosine distribution commonly assumed in literature. There is no contact
at the expected crack location, 8= -90°. However, as soon as a crack
appears, the contact spreads to one side ("upper lip") of the crack mouth.

As the crack opens, the other side ('lower lip") of the crack mouth moves
away from the pin resulting in no pin-bearing pressure on the lower lip.
Figures 3-14 through 3-16 show that the longer the crack, the higher the
pin-bearing pressure on the upper lip of the crack mouth, especially for a
small Ro/Ri ratio. For example, for a Ro/Ri ratio of 1.5, the normalized
pressure at the upper lip of the crack mouth increases from zero for

c/Ri = 0 to more than twice the average pressure for C/Ri > 0.3. The pres-
sure distribution elsewhere on the contact surface also changes with the

crack length. For larger crack sizes, the pressure decreases from an initial
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maximum value at the crack mouth to a local minimum and then gradually in-
creases again and approaches another maximum before decreasing to zero at

the end of the contact surface.

The effect of pin-bearing pressure distributions on stress intensity
factors is shown in Figure 3-17 for single cracks in a straight lug having
a RO/Ri ratio of 1.5. In Figure 3-17, the circle and triangle symbols are
results obtained from Reference [9]*, where it is assumed tha. the pin-bearing
pressure distributions are cosine and uniform distributions along the 180-
degree contact surface, respectively, and that such distributions remain un-
changed with the crack length. The square symbol represents the results
obtained using the present analysis, which has properly accounted for the
change in pressure distribution as the result of crack extension. As can be
seen from this figure, when the crack is small (c/Ri < 0.05), the current
computed K-value is practically the same as that obtained using a uniform
pin-bearing pressure distribution. However, as the crack length increases,
the current analysis gives a lower K-value than the others. This is because
when the crack length increases, the pressure near § = -90° increases
markedly and exceeds the average pin-bearing pressure (see Figure 3-14).
This high pin-bearing pressure, when applied near 0 = -90° in the direction
almost paralliel to the crack orientation, tend to close the crack surfaces,

hence reducing the stress intensity factor as discussed by Brussat [16].

The computed normalized opening mode stress intensity factors using a
steel pin and an aluminum lug model are presented in Figure 3-18 as a function
of normalized crack length (c/Ri) for single cracks emanating from the hole
wall of straight attachment lugs with ROIR1 ratios ranging from 1.5 to 3.0.

In all cases, the computed sliding-mode stress intensity factors, , are

KII
much smaller than those of the opening mode, KI’ so they are not presented
in the figures. It should be noted that the K-values were normalized in
terms of the average bearing stress, Cpr? instead of far-field gross section
stress, o, To convert these normalized factors in terms of 06’ one can
simply multiply these normalized factors by the corresponding racio of
Ro/Ri' Yor convenience, the computed K-values normalized {n terms of the

average far-ficld stress are tabulated in Table 3-3 as a function of

*the results are mislabeled in Reference [9]; uniform distribution results are
labeled cosine distribution and vice versa.
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normalized crack length (normalized by the net section)., Note that

at the edge of the hoie (c/Ri = (0), the normalized stress intensity factor
was obtained by multiplying the stress concentration factor determined

from unflawed stress analysis by 1.12, which was derived by Gross et al [21]
for a straight edge crack i{n a finite—plate specimen loaded in tension. Un-
flawed elastic distributions on the prospective crack plane and the corre-

sponding stress concentrat{on factors at the edge of the hole have been given

in Figures 3-4 and 3-5, respectively.

Studies were also made to investigate the effects of a single crack
versus a symmetrical double crack and relative rigidity of the pin and the
lug (Epinlglug)' A typical comparison of K-values obtained for a single
crack and a symmetrical double crack in a straight aluminum lug loaded by a
steel pin (Epinlslug = 3.0) is shown {n Figure 3-19. As anticipated, the
computed K-values for a double crack are higher than those of a single crack,
and the difference increases with the crack length. It increases from less
than 1% for c/Ri € 6.2 to about 37% for c/R1 = 0.9. To study the effect
of the relative rigidity of the pin and the iug on the stress intensity
factors, the computed K-values for a single crack emanating from the hole
wall of a steel lug loaded by a steel pin (Epinlalug = 1.0) is also included
in Figure 3-19. As presented in this figure, the K-values computed for a
combinat{on of a steel pin and steel lug is slightly higher than that of the
steel pin and the aluminum lug. A comparison of stress distributiors along the
¢ -« -90° radial line for steel lug-steel pin and aluminum lug-steel pin
combinations is presented im Figure 3-20. These stresses can be used in

conjunct ion with Green's function to calculate the stress intensity factors

appropriately.

2.3 THE WEICHT FUNCTION METHOD

——

The linear superposition method has been used frequently to abtain the
stress intensity factors for various types of crack problems. The primciple
of superposition of linear elasticity implies that, for the purpose of cal-
culating stress inteasity factors, loading the crack faces with 0O(x) is
equivalent to loading the cracked body with loads which produce @(x) on

the prospective crack faces in the absence of a crack.

Figure 3-21 shows the scheme of the limear superposition method. The

stress intensity factor of problem 3-21a is equivaleat to the sum of that of

4}

N

. a

RN

N ¢t et t e ) - B .2 r-';-‘ “».‘
i AP PR TR VLT RN LY S PET ST WV C PR C VN P TG VA U W Y A ot 2N

M
a® .
w

> 8

gk a0 )



FYRAN)

<
"
3.0
1
. u *
. &
o £
- ()
X > 2.0
o
< Q
P
' 8]
<
>
—
)
Z
'y wud
s —
. 9 Z
v
%2l
&
L —
! =~
? 2
{ <
- 3 NO. OF
. o) SYMBOL | CRACKS Ean’ ELuG
. R 3
. —_—— 1 !
2 3
’.' 0.0 0.2 0.4 0.6 0.8 1.0
T NORMALIZED CRACK LENGTH, c/(lo-ki)
X Figure 3-19, lMormalized Stress lateasity Factors for Cracks
] Ynanating from Straight Lugs for Single and
= Symmetric Cracks and for Various :pin,tlug Ratios
: (% /& s 2.2%)
J o i
®
]

A 42

TN R Y L



ro
(=]

1.0

MORMALIZED STRESS ALONG x~AXIS, o /0o,
y br

- | i
.0 0.3 1.C

NCRMALIZED DISTANCE FROM EDGE CF HOLE (x-Ri; / (Ro-Ri)

0.0
0

Pivure 3-20. Unflawed Stress Distributionsin Straight Attachwent luvs
for Various Epin/blug Ratios (Ro/Ri = 2.25)




— QRO —_— —— 2R° — ——— ZRO——~4

(a) ®) )

Figure 3-21, Schematic¢ of Linear Superposition Nethod

L4

A

N . .t . - .- . .
- N . . N N . . - - PO

U

- Ve . . . . T - .-
R . N R . . - _ a . ] e et B - .
R P S W PP I, . B %, N ) P B P TS VL P U WS NP, S ST DU T S/ VR e L, SOr PR L SUR SIS S ST S I SO .



problems 3-21b and 3-21c. Since problem 3-21b is crack free, the stress—
intensity factor of problem 3-21a is equivalent to that of problem 3-21c.

By idealizing the stress in problem 3-21c as N discrete loads, Pl""’P

N)
then the stress-intensity factor, for a given crack length ¢, can be com-

puted from the following equation

N N
K(e) = Z K, = ; ki(xi,c) P, (xi) (11)
=1 =1

where ki(xi’c) is the normalized stress-intensity factor due to the ith
load, Pi’ applied at location X;+ For arbitrary distributed stress, o (x),

instead of discrete forces, P, ) Equation (11) becomes

c

K(c) =/ k(x,c) . 0(x) dx (12)

o

In Equation (12), k(x,c) 1is the weight function (or Green's function).
Bueckner [22] and Rice [23] defined the weight function as

H
k(x,c) = ﬁa—)- . -——a‘?—— (13)

for a symmetrical load system on a linearly elastic body containing a crack
of length c. In the above equation, H is an appropriate elastic modulus:
it is E/(1-V2)fot plane strain and E for generalized plane stress. K(c¢)
is the known stress intensity factor and u(x,c) 1is the y-component of the
crack surface displacement at x. The weight function was shown [22,23] to
be unique for a given structural geometry and crack size regardless of the
loading condition. Therefore, it can be developed for one load condition
and then utilized to determine the stress-intensity factor for any other

load condition.

The closed form expressions for the weight function for edge cracks
(11,24 ], center cracks [25) and collinear cracks (26] tn a wide panel are
available. However, the closed form weight function for cracks emanating
from a hole is not available. Therefore, the weight function for a straight

center crack has sometimes been used to estimate the stress-intensity factor

for radial cracks emanating fram a circular hole [27—29), located i{n the




e
)

L5

geometric center of a long plate. Impellizzeri and Rich [10] modified the
weight function derived by Bueckner [11] for an edge crack in a semi-infinite
plate to include the geometric correction factors for estimating the stress-
intensity factor of a crack in an attachment lug. In order to establish the
appropriate values of the derivative Ju/dc, to be used in Equation (13),
Grandt [30] supplemented Bowie's solutions [31] for a radially-cracked hole
with a finite element analysis to obtain the corres_onding crack-mouth open-
ing displacements. Hsu and Rudd [32) developed theé Green's function from
the stress-intensity factors computed using the high-order singularity ele-
ment for a double-radial crack emanating from an open hole and subjected to
a pair of concentrated loads on and perpendicular to the crack surface.

This approach is capable of accounting for the effect of hole curvature,
finite width and the profile of the lug head. Therefore, it was used to
develop the weight function for through-the-thickness cracks emanating from

the hole of attachment lugs.

/2

By defining the weight function G = k(c/?f)1 and &= (x—Ri)/C and sub-

stituting them into Equation (12), one obtains

1
Kie) = 0 \/"T—c/ Glc,£) & (£) df (14)

o

where 0y is the uniform far-field stress and ¢ = G/Ob is the normalized

unflawed stress distribution on the prospective crack surface.

The weight function G, for a single radial crack emanating from a
circular hole of the lug and subjected to a pair of concentrated forces on
the crack surfaces, as shown in Figure 3-22a, is obtained from the computed
stress-intensity factor using 2-D cracked finite element analysis for various

R /R, ratios, crack lengths c/(Ro—Ri), and (x-R;)/c ratios as follows:
c x Yo
G ((ﬁ;:izj, < ﬁ;) = k(x,c) Val/1 (15)

Finite element methodology becomes difficult to employ when the concen-
trated forces are applied close to the crack tip, say (x—Ri)/c > 0.9,
In thig range the corresponding weight functions were obtained using
the edge crack model as shown in Figure 3-22b. The weight function, Gl’ for

such edge cracks is available in Reference [18], and can be written as
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- +
3/2 (1 - .S )1/2

{ 3.52(1—(x—Ri)/c) 4.35 - 5,28 (x—Ri)/c
2b

(1 - c/2b)

1.30-0.30 ((x—Ri)/c)3/2

+ 0.83-1.76 (x-R )/c] [1—(1-(x-R )/e) E]} (16)
Vi - ((xR))/0)° ! b

In the conventic:al finite element method, the external force can only
be applied at nodal points. When the crack length is small, it becomes
cumbersome to refine the model such that there will be enough nodes along
the crack faces for the purpose of computing the K and G values. There-
fore, an alternate approach is used. For each crack length ¢, the K and
G values were calculated at each available nodal point on the crack face,

say (xi—Ri)/c, using a finite element model for the configuration shown in

Figure 3-22a and Equation (15). The weight function G, for an edge crack

1
in a finite width strip (Figure 3-22b) was then calculated at the same loca-

tions, (xi—Ri)/c, using Equation (16), and the ratio was obtained.

r (xR )/e) = G ((x,-R)/e)/Gy ((xy-Rp)/e) (17

3

Assuming that r approaches 1 as (xf«R{)/c approaches 1, a least

squares polynomial fit is obtained.

M

i-1
¢ ((x-R,)/c) = j{: cjux-ai)/c)J
j=1

(18)

The weight function at any location on tne entire crack surface can

then be computed using Equations (16) and (18) as
G ((x-R)/c) =T ((x-R;)/e) Gy ((x-R{)/¢) (19)
The results obtained using the aforementioned procedure are shown in
Figures 3-23 through 3-25 for RO/R1 ratios of 1.50, 2.25, and 3.00,

respectively. The symbols shown in these three figures are the discrete

values obtained using the finite element method and the curves are obtained
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using Equation (19). As seen fromthese figures, this alternate approach

gives an excellent estimation of G-values at any desired location.

With a knowledge of the weight functions, G, and the unflawed stress,
0, on the prospective crack surface with the crack absent, one can numeri-
cally integrate in Equation (14) to obtain the corresponding stress-intensity

factor for a radial crack in an attachment lug.

Integration of Equation (14) can be carried out accurately and effici-
ently by the Gaussian quadrature formula. In order to perform the Gaussian
integration, the integral in Equation (14) needs to be transferred into the
well-known Newton-Cotes quadrature formula for the range of integration be-

tween -1 and +1. This can be easily done by assuming that
(=2t -1, 0r E=3 (€ +1), (20)

and the integral of Equation (14) becomes

1 1 n

/ & (5)6(c,8)d = / FOAL = Y H, R, 21)
o -1 i=1

where
Q) =155 o e, B2 (22)

The abscissae (Ci) and weight coefficients (H ) of the Gaussian quad-
rature formula, Equation (21), for n up to 10 are given in Reference [33].
With this transformation, the stress-intensity factor can then be calculated

from the following equation:

n
K=0 Vic O H FE) (23)

o}

pobe
-

=

An evaluation was made on the calculation of the stress-intensity factor
using Equation (23). It was found that, for n = 9, the computed K values
using CGaussicn integration are essentially the same as the ones obtained using

trapezoidal rule numerical integration with 400 equal integration intervals.

........
.............



Therefore, the more economical Caussian integration was exclusively used in

the K calculation using the weight function approach.

An important point on the development of the Green's function for attach-
ment lugs is to be noted at this point. In the case of an attachment lug
loaded by a pin, which is a contact problem, the pin bearing pressure distri-
bution between the lug and the pin varies with the crack length (Figures
3-14 through 3-16). The pin bearing pressure distribution has a significant
effect on the unflawed stress distribution (on the prospective crack surface)
and on the stress-intensity factors (Figure 3-17). 1In the case of finite
element analysis of cracked lugs, the pin bearing pressure distribution was
taken into account in the analysis itself. In the case of the Green's function
method, the pin bearing pressure distribution variation can be accounted for

by two methods.

The first method is to use the Green's functicn developed above which
should strictly be used only in conjunction with the correct unflawed stress
distributien on the prospective crack surface for the varying pin bearing stress
distribution as the crack length changes. The problem of calculating the pin
bearing pressure distribution as the crack length changes is statically in-
determinate, unless a fracture analysis, such as the finite element solution
described before, is carried out. But, once a fracture analysis is made,
then there is no need for the varying pin bearing pressure distribution,
because the needed stress-intensity factors can be obtained from the fracture

analysis. Thus, this method becomes redundant and is discarded.

The second method is to use available data of stress-intensity factors
(from the finite element procedure, Figure 3-18) and the unflawed stress
distribution on the prospective crack surface (Figure 3-4) to modify the
Creen's functions to account f{or the varying pin bearing pressure distribu-
tion. Such modifications have been made [or the Creen's function and are pre-
sented in Figures 3-26 through 3-28 for outer-to-inner radius ratios of
1.50, 2.25 and 3.00, respectively, whereas Figures 3-23 through 3-25 corre-
spond to the original or unmodified Green's function. For calculating the
stress-intensity factors in simple attachment lugs loaded by vins, the
Green's functions in Figures 3-26 through 3-28 should be used. The Green's
Tunctions yiven in Fleures 3=23 through 3-=29% are still uselul and needed in

the analvsis of attachment lups where the unflawed stress distreibution on the

. . .- .
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prospective crack surface does not depend on crack length, for example,
residual stresses due to the installation of an interference-fit bushing.
Tables 3-4 through 3-9 provide the original and modified Green's function
values in a tabular form at several (x-R )/c locations and different crack

lengths for outer-to-inner radius ratios of 1.50, 2.25 and 3.00.

In order to put the results in perspective, Figure 3-29 compares the
stress-intensity factors obtained by the compcunding method, finite element
method and original and modified Green's function methods. As can be seen
from the figure, the results obtained by the modified Greeun's function
method match the finite element solutions. The results of the original or
unmodified Green's function method tend to be higher, especially for the RO/Ri
ratio of 1.50. The difference betwcen the two Green's function methods
essentially reflects the effect of pin bearing pressure distribution as the

crack length changes.

Figure 3-29 also compares the compounding method solution to the other
solutions. For RO/Ri ratios of 2.25 and 3.00, the compounding solution
gives excellent estimates of stress-intensity factors, except when the crack
length is very small. The error at small crack lengths could be corrected
by making proper use of the stress concentration factor values for the lugs,
Ktb’ given in Figure 3-5. However, for ROIR1 = 1,50 the compounding solu-
tion tends to overestimate the stress—intensity factors, like the original
Creen's function method. This error may be nartially due to the major dif-
ferences between the true pin bearing pressure distribution and the ideal-

ized distribution used in the compounding method.

2.4 ANALYSIS OF LUGS WITH INTERFERENCE-FIT BUSHINCS

In order to improve the crack initiation and crack growth lite, the
concept of installing an interference-fit bushing to introduce beneficial
resicual stresses around the hole of the lug prior to pin fitting has been
used in aircraft attachment lug design. For a given fatigue load cycle,
the installation of an interference bushing can reduce the effective tangen-
tial stress range at the likely location of crack {nitiation, resulting in
improvement {n fatigue and crack growth life. It also reduces frotting

damage of the hole wall of the lug.
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Figure 3-29. Comparison of Stress latensity Factors Computed Using the Compounding,
Weight ¥Function and Cracked Finite Element Methods
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The stress-intensity factors for a crack emanating from an attachment
lug having an interference-fit bushing can be estimated using the weight
function approach similar to the one reported in Reference [34]. The proce-
dure consists of two major steps. First, the effective unflawed stress dis-
tribution on the prouspective crack surface was obtained by superimposing the
residual hoop stresses, Oro’ due to the installation of an intereference-fit
bushing on the applied tangential stresses, Oﬁp’ obtained due to the appli-
cation of a pin loading. Next, a crack was introduced in this stress field
by removing the tractions on the crack faces and computing the corresponding
effective stress-intensity factor using the developed weight function, G,

and the following equation:

1
K = /T / (qap + ore) - G(c,8)dt (24)
[o]

Unflawed Stress Analysis

The installation of an interference-fit bushing creates a compressive
radial stress and a tensile hcop stress in the lug in a manner similar to a
thict wall cylinder under internal pressure. On this basis, an approach
similar to that of Seely and Smith [35] for a thick-wall cylinder under
internal pressure is used to compute the residual stresses in the lug due
to the installation of an interference-fit bushing. Before the residual
stresses in the lug can be computed, the pressure, Ps, on the surface of

contact between the bushing and the lug must be determined.

let RO and Ri denote outer and inner radii of the lug and L and

T, denote outer and inner radii of the bushing before the interference-fit

installation, respectively., Let R‘ be the inner radius of the lug (and
also the outer radius of the bushing) after installation, and let 6R be

the ditference in these radii before installation.
o) r - K (29)

After the installation o! the bushing, the inmer radius of the lug will

be larger than its initial value by an ameunt, 61, which is related to the

unknown contact pressure as



2
; v 1 (26)
1

where EL and uL are the Young's modulus and Poisson's ratio of the lug.

At the same time, the outer radius of the bushing will be changed (decreased)

by an amount, 62, which is given by the following equation:

(27)

where EB and by are the Yeung's modulus and Poisson's ratio of the bush-

ing.

At the completiow of the installation process, the difference in these
original radii, GR’ disappears as a result of the changes in the length 51
and 62. Therefore, the sum of the magnitudes of 61 and 62 is equal to

GR i.e.,
P R R2 + R2 E R2 + rz
5 = s 1 o 1 . U . _L 1 i - (28)
R E 2 2 L E 2 2 B
L R -R B\R, -r
o 1 1 i
The contact pressure is cbtained from the above equation as
Ri + Rf E‘ Ri + ri
Pe = B Nz e\ 2 (29)
B, - B B\R -1,

With contact pressure determined, the residual stresses in the lug due
to the installation of an interference-fit bushing can be calculated using

the following equations:

66

- .~
e .
- W o tatiMe " - . .
B W s I e . : . Lo s .
[ PR PRAATIT WC VLT PP IR IR, W ALY O S I S R I S P S YRS SV S Sl i kx4 Ntem.omow tmd




-
P R2 Rz
g = s 1 _o . i
6 R2 - R2 x2
o 1 L
and i x> Ry (30)
2 [ .2
P R R
g = s 1 2y
r R2 _ RZ x2
o 1

where x is the radial distance as shown in Figure 3-30.

Equation (30) can be used to compute the residual tangential
stresses along the radial direction (x—axis) in attachment lugs due to the
installation of interference-fit bushings. 1In the following discussion,
results arepresented for attachment lugs with lug outer radius to bushing
inner radius ratio (Ro/ti) of 2,25, The nondimensional parameters con—
sidered in the analysis are interference levels (GR/ri)’ bushing-to-lug
rigidity (EB/EL) and bushing thickness tB/ri). The effects of these param—
eters on the stress distribution along the x-axis in attachment lugs are
presented in Figures 3-30 through 3-32. Figure 3-30 shows the increase in
residual stresses with increasing diametral interference for a bushing-to-
lug rigidity ratio (EB/EL) of 3.0 and a bushing thickness (tB/ri) of 0.12,
Figure 3-31 shows the increase in residual stresses with incrasing bushing-
to-lug rigidity ratio (EB/EL) for a bushing thickness (CB/rt) of 0.12 and
an interference level (GR/ri) of 0.00533. F¥Figure 3-32 shows the increase
in residual stresses with increasing bushing thickness (CB/ti) for a
bushing-to-lug rigidity ratio (EB/EL) of 3.0 and an interference level
(Gk/ri) of 0.00533.

The tangential stresses along the x-axis due to the application of pim
loading are then computed using the finite element method. 1In the analysis,
it is assumed that the bushing and the lug remain in contact and that no
slippage occurs along the hole wall surface during the application of the
load. The computed tangential stress normalized by the far-field applied
stress for a lug with a Ru/ti of 2.25 are shown in Figures 3-313 and 3-34,
Figure 1-1}) depicts the decrease i{n stresses due to pin loading with in-

creasing bushing-to-luy rigidity ratio (Eﬁ/E ) for a constant bushing thick-

i
ness (ln/rl) af 0,12, Figure 3-V4 presents the decrease {n stresses due to
pin loadiag with increastag bushing thickness (tu/ri) for a conszant bushing-

to-lug rigidity ratiae (EB/EI) ot 1.0
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The results presented in Figures 3-30 through 3-34 pertaining to the
stress analysis of lugs with bushings should be used with caution in the
sense that they can be used as long as the assumptions are not violated.

In other words, these results can be used as long as there is sufficient
interference to prevent separation between the bushing and the lug. When
the interference level is small and/or when the crack length is large there
will be separation, which again depends on the geometry and the magnitude of

the applied loading. Also, the above results cannot be used when the total

effective stress (residual stress plus applied stress) exceeds the

material yield strength. If the total effective stress exceeds the material
yleld strength, a nonlinear elasto-plastic finite element analysis such as
used in Reference [34] should be conducted to obtain the total effective
stress. In the current study, only the linear analysis is performed. Once
the total tangential stresses are obtained by superposing residual stresses
and the applied stresses, then they can be used te calculate the stress in-
tensity factors for a crack emanating from an attachment lug having an
interference-fit bushing by using Equation (24) where G(c,{) is the origi-

nal or unmodified Green's function.

Stress—Intensity Factor Analysis

To study the effects of various parameters ovn actual (dimensional)
stress-intensity factors rather than nondimensional, a phyzical lug
having an outer radius of 1.6875 inches with a bushing inner radius of
0.75 inch (ROIri = 2.25) subjected to a far field stress (06) of 6 ksi and
stress ratio (Rfar) of 0.1 is considered in this discussion. For this lug
configuration and loading, an effective stress ratio (Reff) at the lug hole
wall (x = R1) as a function of interference levels can be computed and is
presented in Figure 3-35a. Figure 3-35b shows the variation of Reff along
the x-axis of the lug for an interference level (6R/ri) of 0.00533. It is
seen from the figure that Reff 1s constant almost throughout the net sec-
tion (x-axis) except near the outer surface of the lug.

The stress—intensity factors were computed using Equation (24) and are
presented in Figures 3-36 and 3-37. Figure 3-36 shows the effective stress-
intensity factor range, AK, for various bushing-to-lug rigidities (EB/EL)
for a given bushing thickness (tB/tt) of C.12. The data corresponding to
EB/EL = 0 represent a simple lug with no bushing. It is clear from

13




(o)

006'_
o Ry
~N -— R a
s 2 2'25'EB/EL 3.0
E 0.4
° /p.20.12; x/Ry = |
" ’B’ Fiav.l4 %/ 1= 1.0
0:6 ao = §KSI; R=0Q,1
0.2
r,=0.75 IN
0 1 1.
0.0 0.004 0.008
o/ 1y
0.6 &)
8
-]
(=
0.4 R E
‘5 0. 2.25; E—’ = 3.0
) " L
[i]
et , 6
<® L.002 <R 0.00267
0.2 % i
g =4KSl; R=0,1
" =075 IN
l 1 1 1 ]
0.0 0.2 0.4 0.4 0.8 1.0
k) / R -R))

Effective Stress Ratio in an Attachment Lug with Bushing

Figure 3-35.
for Various Interference Levels and Along x-Axis

14




VIN

>

S —2=2,25; r. = 0,75 IN

1 i

s E, = 107 PSI; 1. = 0.09 IN

O L /' .

Z

<

ol

. 0, = OKSI; R = 0,1

G

g

>

o 20)

5 g

Z E o

(Ve)

[Va]

(¥8)

= 2

l;

= 3

U

Ha

[V

.

Wl
ol. ] 1 L 1 B
0 0,2 0.4 0.6 0.8 1.0

Figure 3-36. Stress Intensity Factor Ranges for Cracks
at an Attachment Lug for Various
Bushing-to-Lug Rigidity Ratios

75




KS! VIN

40
¥§
4 —'RE= 2.25 . ¢ = 0.75IN
w i '
Q E
Z B 7 o
< g = 3.0, E =10 e
o L
o
5 Oo = 6KSI ; R = 0,1
X
>..
£ t
7 _B_
w 20'— r -
> i
; 0.0
]
o
v 0.0% 0.\7‘
‘é’ T
5 0.24
e
vy
0 1 1 L 1 !
0 0.2 0.4 0.6 0.8 1.0
C/(RO_R‘) -

1

’
Figure 3-37. Stress Intensity Factor Ranges for Cracks
at an Attachment Lug With Bushing for
Various Bushing Thicknesses

16




Figures 3-35a and 3-36 that the installation of the interference-fit bushing

causes an increase in the effective stress-intensity factor ratio, R

ominlomax = Kmin
factor range, AK. This will result in the reduction of fatigue crack growth

eff
/Kmax’ but a significant decrease in the stress—intensity

rate. The effects of bushing thickness (tB/ti) on the effective stress-
intensity factor range, AK, are presented in Figure 3-37. Based on the re-
sults shown in Figures 3-36 and 3-37, it may be concluded that: (1) for
constant bushing thickness, an increase in the bushing rigidity decreases the
effective stress-intensity factoc range; and (2) for constant bushing rigid-
ity, an increase in bushing thickness decreases the effective stress-intensity

factor range.

3. STRESS-INTENSITY FACTORS FOR CORNEF CRACKS

One of the most common types of flaws for which there exists no closed
form analytical solution is the corner crack at a circular hole. To date,
several approximate methods have been proposed for computing the stress-
intensity factors of a quarter-elliptical crack emanating from the corner of
an open hole located in the geometric center of a plate. The methods range
from an empirical equation which was developed using the fatigue crack
growth method of calibrating the measured crack growth rate, da/dN, and the
stress-intensity factor range, AK, to one- and two-dimensional compounded
solutions, to the sophisticated three-dimensional finite element analysis.
In this section, three methods in an increasing level of complexity and
sophistication are presented for the determination of the stress-intensity

factors for single corner cracks im aircratt attachment lugs.

3.1 ONE-PARAMETER COMPOUNDING APPROXIMATION

The corner crack is more difficult to analyze than the through-the-
thickness crack because it has both surface length and beore depth dimensions
and both must be considered in the crack growth analysis. (.. possible
simplificaticon {s to assume a fixed relationship betveen crack depth "a" and
surface length "c¢', so that only one crack length parameter is independent.
This was the approach used in Reterence [14] to analyze corner cracks at
fastener holes. The following stress-intensity correction factor, governing
the growth of the corner crack in the length direction, was verified empir-

ically on open hole farigue coupons in Reference [14]:

7




& = 1- __0.2886

73 (31)
a [
1+ 2(2) (i)

This factor can be multiplied by the through-the-thickness crack solu-
tion, K ;o obtained by the compounding method and given in Equation (10).

(c) (¢)
K = K e ¢71 (32)

Equation (32) provides a simple one-parameter K estimate for the point
near the lug face. This factor can be used even after a >B, to smoothly

change K as the corner crack becomes a through-the-thickness crack.

Equation (32) was used to estimate the stress-intensity factors for
corner cracks at attachment lugs having ROIR1 ratios of 1.50, 2.25, and
3.00. These results are tabulated in Tables 3-10 and 3-11 for B/R, = 2/3
and 1/3, respectively. Note that, in the calculation, the depth-to-length
ratio (a/c) was assumed to be constant and equal to 1.33, which was found

exverimentally by Schijve and Hoeymakers [2].

3.2 TWO-PAKAMETER WEIGHT FUNCTION APPROXIMATION

In an earlier contractual program with the Flight Dynamics Laboratory, Hsu

et al [36] developed a simple procedure for estimating the stress-intensity
factors along the boundary of quarter-elliptical corner cracks emanating
from fastener holes from corresponding through crack solutions. Correlation
between the calculated stress-intensity factors and those deduced from the
tests were good. A similar procedure can be used to estimate the stress-
intensity factors along the periphery of a quarter-elliptical corner crack

in an attachment lug.

The stress-intensity factor for a single through-the-thickness crack

of length ¢ in an attachment lug is given by

¢
K(R;) CARVETY R (ii) (33)

vhere B¢ (¢/k|) ts the through-the-thickness correction factor.
Then the corresponding stress-intensity factor for a single quarter-

elliptical corner crack can be written as
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x-R, \ M x-R
a { 1 fa c - b a 2
K<'c" “) CAVEE Br( R ) 0 (E’ ") “c(n i ) 3 (c’ n) (34)

and
t
x-R M x-R
‘( i 1 [e¢ c i a a
K\ ’Q)- oo nc BT( Ri) T (-a—’a) MC(Ri’ c ) MB(C’ B) (35)
for i,
c
where
x-R
L a-p (36)

M =F+
c

in which o is the elliptical angle measured from the hole wall, x is the
distance from the center of the hole to the particular point of interest on
the crack neriphery, Hihp i{s the combined front free surface and flaw shape
factor, MC is the wall curvature correction factor, and MB is the back
surface correcticn factor. The values of MihbandF} and My are presented in
References [36] and [58] , respectively. As in Reference [36] , 1t is
assumed that for a given number of applied load cycles, the extension of the
quarter-elliptical crack border i{s controlled by the stress intensity factors
at two pofnts; namely. the [ntersections of the crack periphery with both the

hole wall and plate surface (i.e., K, and KC). In general, the stress

A
intensity factors at these two locations are different, resulting in differ-
ent crack ygrowth rates. Therefore, the new {law shape aspect ratio after
each crack growth increment differs from the preceding one. The new flaw
shape aspect ratfo {s computed using the new crack lengths at both the hole
wall and plate surface. All the correction factors have been reduced to

simple equations for locations A and €, and the two-parameter corner crack

streuss Intensity Factor formulas are summarized in Flgurve 3-138.

tn KReference [ 16!, the above process was repeared unt il the crack length
along the hole wall was equal to the plate thickness. At that time, the
crack was assumed to be a through-the-thickness crack with length c¢. tThis
assumpt ion was based upon the experimentsal observation rthat after the
crack penetrates the back surface and the cyclic load application continues,
the back surtace crack length increases much taster than that of the front

surface until the tront of the through-the-thickness crack becomes stable.
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This transitional crack growth assumpiion {s ver; reasonable for a crack
at a fastener hole, since, at the time the crack grows through the thickness,
the remaining net section is usually much larger than the surface crack
length. However, for an atta ‘wment lug. when a part-through crack grows
through the thickness, the remaining net section is usually small in
comparison to the surface rrack size. Therefore, a proper transitional crack
growth criterion i{s needed for the transition peiiod from the time the crack
penetrates the back surface to the time the crack lengths are essentially

equal on the froat and back surfaces.

Figure 3-39 shows the transitional crack geometry, in which e and

o, are crack lengths on the front and back surfaces, respectively.

Collipriest and Ehret [37] proposed a stross-intemsity magnification factor

for the crack tip at the back surface of a surface crack as

1 142

P.

for cB>0 {37)

J

when the back-side crack length equals the froat-side crack length, the
magnification is unity and the through crack has achieved a uniform froat.
This facter will be used to estimate the stress-intensiry factor at the back

surface ot the transitional crack, i.e.

[
) B
KH - o, Ve, ﬁjT (EI) - (34)

The stress-intensity f{acter at the front surface will be calculated
usitg Yquation (39) and an imaginary crack length along the bole wall direc-

tion, a', t.e.
: _; — (- & €
j (& ) Y (:a 907) (19)

An itmaginary crack leagpth a' can be determined by fitting an ellip-

tical equation through points C and B, as
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Flaure 3-39. Transttional Crack Geometry
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2 -1/2

a' - B i - (f_f}) (40)
°F

When the back-side crack length, c¢_, apprcaches that of the front side (i.e.

B
B"*C" as shown in Figure 3-38), the factor cF/a' becomes very small and the

corresponding Mi/¢) ratio approaches unity. After that, the transitional

crack becomes a through-the-thickness crack with a uniform front, i.e.
c
Kg = Ko =0, VTe B (iI) (41)

Equations (34) and (35) were used to compute the stress-intensity
factors at tne intersections of the crack periphery and the hole wall and
plate surfaces. The 2-D finite element method solution results from Table 3-3
were used for the basic throug..-the-thickness crack solution, K(c/Ri). The
results are shown in Figures 3-40 through 3-42 for Ro/Ri ratios of 1.50,
2.25 and 3.0, respectively. In each plot, the flaw shape aspect ratio al/c
was assumed as constant. 1t should be noted that the computed part-through
crick stress—intensity factors are normalized by Tor \/ﬁZ'. These solutions
correspond to corner crack solutions for a <B. Figure 3-43 presents the
normalized stregs-intansity factors at the lug surface having a constant
afc ratio of 1.33 and a RO/Ri ratio ranging from 1.5 to 3.0. In this
figure, the solutions are presented even afcer the crack breaks through the
back stde, i.e. a>»B. Corresponding ncrmalized stress-intensity - factors
computed using the one-parameter compounding method are also shown in the

figure for comparison.

3.3 THREE-DIMENSIONAIL, CRACKED FINITE ELEMENT METHOD

Numerical methods such as the slicing technique [38]), the conventional
three-dimensiona! (3-D) finite element method [3% ], the boundary integral
equation approach [40], and the 3-D alternating technique {41] have been
ased to analyze corner-crack problems. To accurately depict the extreme
stress gradient existing in the vicinity of a crack tip, the necessary com-
puter etffort in each case is considarable, In an attempt to minimize the
econoric problem of the conventional <pproach and to extract the stress-
intensity tactors directly, a J-dimensional cracked finite element was used
whict, is capable ot characterizing the crack-tip stres: singularity intern-
ally. The procedure used in the development of the 31 D cracked element is

described 1n Keterence [642] and summarized as follows,
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Figure 3-40.
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Two types of 20-node 3-D cracked elements, as shown in Figure 3-44,

were developed using 1 hybrid displacement finite element procedure. The
variational principle which governs the assumed displacement hybrid finite

element model is the stationary condition of a modified total potential
energy functional with a relaxed requirement of interelement boundary dis-
placement continuity, a priori. This variational principle is a three-field
variable principle. The three field variables are the element interior dis-
placements, element boundary displacements, and the lLagrange multipliers.
The Lagrange multipliers are physically the interelement boundary tractions
and are assumed to match the independently assumed element interior and
boundary displacements at the interelement boundary. Three-dimensional
asymptotic solutions for displacements (\/T - type) and stresses (1/Vr -
type) near the crack front are embedded in this procedure. Apart from satis-
fying relevant field :quations, the variational principle also enforces the
conditions of displacrment continuity and traction reciprocity at the inter-
element boundary a posteriori, assuring the convergence of the finite ele-
ment procedure. The procedure is capable of analyzing mixed mode fracture
problems (Modes 1, Il and 111), and the three stress-intensity factors at
various locations along the crack front are treated as unknowns along with
the generalized nodal displacements of the structure. The final set of
algebraic equations governing the global nodal displacements and the three
stress-intensity factors at various locations along the crack froant can be

written as follows:
(6,1 o]« 16,0 {ie} = foy (62)
[k, ] {at} « (ky] {xr} - {in (43)

Where {q*; are the structure's global nodal displacements, {K*} are
the mixed mode stress-inter.! - ‘3 rors at various locations along the crack
front, [Kll' [K2} and [Kj} are the corresponding stiffness matrices (super-
script T represents the transpose), and {Q‘} and {Qz} are the corresponding
nodal forces. It {s evident from Equations (42) and (43) that the solution
for stress-inteasity tactors can be obtained directly from the finite ele-
ment solution procedure. This eliminates additional post-processing of dis-
placement or stress solutions to obtain the stress-inteasity factors through
methods such as the crack opening displacement method, nndal force method,
etc. A detailed descriprion of the hybrid displacement procedure was docu-

wented in Reference [42].




NEAR-FIELD
CRACKED ELEMENTS

FAR-FIELD
CONVENTIONAL
ELEMENT

CRACK BORDER

Figure 3-44., 20-Node Three-limenstional Cracked Llements

''''''''''''




The accuracy and convergence of the three-dimensional hybrid displace-
ment finite element procedure have been tested and verified through the solu-
tion of several complex iracture problems of interest Iln aerospace structural
components, nuclear pressure vessels and components, and solid rocket motor
grain applications [43-45). Raju and Newman [46], using Tracey's (39] wedge
shaped distorted isoparametric crack elements, made a convergence study for
the solution of semielliptical surface flaws in thin plates. A similar con-
vergence study was also made using the present three-dimensional hybrid
finite element procedure in Reference [44]. As discussed in Reference [44], the
present solution with 4555 degrees of freedom has excellent agreement with that

of Raju and Newman for their highest degrees of freedom, 6867.

The three-dimensional cracked element was used to compute the stress-
intensity factors for single quarter-elliptical corner cracks at straight
luge. A total of eight problems of corner cracks in attachment lugs with
various outer-to-inner radius ratios, crack aspect ratios, and crack depth-
to-lug thickness ratios were considered for the present analysis. The geom-
etry of an attachment lug with a corner crack is given in Figure 3-45(a), and
the various parameters for the eight problems considered are defined in
Table 3-12. The bearing pressure at the lug hole wall was assumed to be
uniform and acts only on the right half of the hole as shown in Figure 3-45(a).
This assumption of uniform bearing pressure over the right half of the lug
hole wall was made due to the compiexity involved in the generation of equiv-
alent nodal forces ¢ esponding to an actual pin-lug contact bearing pres-
sure distribution °~ a three-dimensional case. Consequertly, the solutions
by the two-dimensicaal Green's function method generated for comparison
purposes also correspond to the same bearing pressure. Also, the original
Creen's functions were used {n the computation of two-dimensional solutions.
The assumption of same bearing pressure in both cases is important, because
the stress-intensity factor solutions vary significantly depending upon the
bearing pressure distribution, namely, unitorm, cosine and actual pin-lug

pressure distributions,

A typical finite element breakdown, number of elements and total number
of degrees of freedom ftor thepresent analysis arepresented in Figure 3-45(b).
In Figures 1-46 through 1-50, solutions of stress-intensity factor variations
along the crack front by both two- and three-dimensional procedures are pre-

sented tor prablem numbers | and 2, 3, 4 and 5, 6 and 7, and 8, respectively,




(a) Geometry

TOTAL NUMBER OF ELEMENTS = 33
TOTAL NUMBER OF D, O.F, =514

= Rk,

-
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1
SECTION A-A

(b) Finite Elewment Breakdown

Figure 3.45, Ceometry and Finite Element Breakdown of an Atrachment Lug

with a Corner Crack for Three-Dimensional Cracked Finire
Element Analysis
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TABLE 3-12.

COFNER CRACK PROBLEMS ANALYZED
BY THREE-DIMENSIONAL CRACKED
FINITE ELEMENT PROCEDURE

P;?:;’:: R(,/ R a/c a/B
1 1.50 1.0 0.50
2 1.50 1.5 0.50
3 2.25 1.0 0.1667
4 2.25 1.0 0.25
5 2,25 1.5 0.25
6 2,25 1.0 0.50
7 2.25 1.5 0.50
8 2.25 1.5 0.75
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The stress—-intensity factor solutions are normalized by the exact solution
of a through-the-thickness crack of length c in an infinite plate subjected

to a crack pressure of @ Elliptical angles (& ) of 0° and 90° refer

br®
to the intersections of the crack front with the hole wall and lug surface,
respectively.

A comparison of the results in Figures 3-46 through 3-50 reveals that the
two solution procedures agree well at O = OO, but significant diiferences
exist near @ = 90°, For lugs with an outer-to-inmer radius ratio of 1.5,
the maximum difference at & = 90° is about 42 percent and the difference
decreases as the aspect ratio of the crack (a/c) increases. For lugs with
outer-to-inner radius ratio of 2.25, the maximum difference at a=90° is
about 26 percent and the diffevence decreases as the aspect ratio of the
crack (a/c) and the crack depth—to-thickness[fatio (a/B) increase. The overall
behavior of the differences in the solutions is th;t they decrease as the
outer-to~-inner radius ratio, crack aspect ratio and crack depth-to-thickness
ratio increase. Also, the angle at which the normalized stress-intensity
factor is minimum is lower for the two-dimensional procedure in almost all
of tihe problems. Thus, from these results, the two-dimensional procedure
seems to be consistently overestimating the stress-intensity factor solutions
except for elliptical angles close to 0°.

The one-parameter compounding, two-parameter weight function and the
three-dimensional cracked finite element solutions are compared in terms of
corner crack correction factors at the lug surface in Figure 3-51. The corner
crack corre:tion factors are obtained by normalizing KC with the stress inten-
sity factor (by weigh. function method) of a through-the-thickness crack of

length ¢ and are expressed as a function of a/B.

4.  ELASTOPLASTIC ANALYSIS

Several analytical methods of varying complexities have been developed
and discussed in previous sections for through-the-thickness and corner
cracks in stralzht attachment lugs. These analyses are basically for
linear fracture mechanics problems. However, attachment lugs may
undergo substantial plastic yielding around the lug hole, depending on the
specific application and/or design. For example, the concepts of cold-

working of the hole or installation of an interference-fit bushing prior to

pin fitting have been extensively used in actual aircraft attachment lug
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' N design practices to improve the crack initiation life. These concepts are
. basically used to introduce fatigue-improving residual stresses around the
hole of the lug. The lugs may also undergo plastic yielding due to the

application of high pin loads. It is important to develop analytical pro-

cedures for analyzing such problems.

The analytical procedure is similar to that developed and verified for
through-the-thickness cracks emanating from interference-fit and cold-worked .
fastener holes in infinite plates, under a previous Air Force contract
(Reference [36]). The method involves an initial elasto-plastic stress analysis
of attachment lugs to obtain the stress distribution on the prospective crack
surface. These stresses are then used in conjunction with the Green's function
to calculate the stress intensity factors for cracks emanating from lug holes.

The Green's function developed for linear problems is also used for the

elasto-plastic case.

The elasto-plastic stress analysis has been carried out for two mate-
rials, 4340 steel and 7075-T651 aluminum, which are being used for testing
in the present contract work. These materials have been characterized and
the nonlinear elasto-plastic stress-strain relationships were approximated
by trilinear representation and are given in Figure 3-52. The unloading
moduli have been assumed to be the same as the initial elastic moduli for
both of the materials. The analysis was performed for lugs with outer-to-
inner radius ratios, Ro/Ri’ of 1.50, 2.25, and 3.00 and a constant lug inner
radius of 0.75 inch. Far-field maximum stresses, Oy of 35 and 15 ksi were
selected for steel and aluminum lugs, respectively. Isotropic hardening
with the von Mises vyield criterion was used in the elasto-plastic analysis,
Steel pins were used in all cases, and it was also assumed that the pin did

not yield.

The finite-element method was again used for the elasto-plastic
stress analysis of attachment lugs. The finite element breakdown and
the use of spring elements with high stiffness to simulate the pin-
lug contact surface were similar to those in the linear stress analysis.
The model was loaded by a single concentrated force at the center of the pin.
In the nonlinear analysis, a loading was first applied to reach the yield
point, followed by incremental loadings to reach the maximum tar-field
stresses listed above. The loadings were then reduced to give stress levels

corresponding to far-field stress ratios, R, of 0.5 and O.1.
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In the plastic region, the following two convergence criteria were used
in the analysis. A tolerance criterion of AEIC/AEL 1 < 0.1 was used in

the analysis, where AE“, AE are the energy changes for the iteration

L.I
and the load increment, respectively. Regardless of the above tolerance
criterion, the analysis was iterated at least twice for each load incre-
ment. In all the solutions presented here, the maximum value of 4 Elc/

AE‘ 1 was less than 0.035.

The unflawed stress distribution along the prospective crack surface,
90° away from the load iirne, obtained from the elasto-plastic finite element
analysis for the far field stress levels given before are presented in
Figures 3-53 through 3-55 for steel lugs and Figures 3-56 through 3-58 for
aluminum lugs. These results are given in increasing order of ROIRi ratios
of 1.50, 2.25 and 3.00.

For a steel lug with RO/Ri of 1.50, the stresses ( oﬁax) corresponding

to maximum far-field stress of 35 ksi and the stresses (ohin’ R = 0.5 and

amin’ R = 0.1) corresponding to minimum far-field stress for stress ratios
of 0.5 and 0.1, respectively, are given in Figure 3-53. From these stresses,
the difference between maximum and minimum stresses for stress ratios of Q.5
and 0.1, A0R=0.5 and A0R=0.1’ resprctively, can be obtained and are alsc
included in tae figure. At the maximum load, about 20 percent of the lug
ligament has yielded. The effects of plastic yielding of the lug can also
be seen in the distributions of omin. R=0.5 and omin, R=0.1° While
unloading, due to plastic yielding, the stresses near the lug hole decrease
at a higher rate than the rest of the ligament and become negative at the
minimum stress corresponding to R= 0.1. If the loading was completely
removed, significant negative residual stresses would exist near the lug
hole. In caleculations of crack growth any compressive minimum stresses near

the lug hole are neglected due to eraek clogsure, and AQ {s assumed

R=0.!
aot to exceed S However, for {llustration purposes, the actual

X
difference in stresses near the lug hole is iadicated {n Figure 3-53 by a
dotted line. Corresponding solutions for an aluminum lug with the same
geowelTy ars presented in Figury 3-56, aad the results are qualiratively

the satme.

Similar analytical solutions fo:c lugs with an uolu‘ ratio of 2.25 arve
given in Figures 3}-3% and 3-57 for steel and aluminum materials, respec-

tively. In this case, for both the materials, the lugs yield only slighetly;
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that is, about 5 percent of the lug ligament. Also, for R=0.1, the minimum
stress near the lug hole does not become negative for this lug configuration.

Thus, AGR and AC presented are the actual differences in the

=0.5 R=001

stresses. Results for steel and aluminum lugs with a Ro/Ri value of 3,00 are
presented in Figures 3-55 and 3-58, respectively. In this case, the lugs
barely yield, and very small plastic strains were calculated by the elasto-

plastic analysis.

The above stress ranges, computed from the elasto-plastic analysis, are
then integrated with the Green's function to compute the stress intensity

factor« for through-the-~thickness cracks in lugs that are loaded above vield.

The stress intensity factors can be calculated using the Green's func-

tion method by the following equation:
1
K(c) = a, \/m:/ G(e,E) T (&) d¢ (64)
(

The stress intensity factor range for through-the-thickness cracks can
be computed from the above equation by either inputting the maximum and
minimum stresses and subtracting the values, or more directly, by using the
stress range. However, in the cases where the stresses corresponding to
minimum load become negative, the stress range should not be used. Rather
the direct input of maximum and minimum stresses should be used and care
must be exercised to neglect the negative stress intensity factors corre-
sponding to minimum load while computing the ranges. The computed values of
stress intensity factor ranges for steel and aluminum lugs are presented in
Figures 3-59 and 3-60, respectively. The results are given for ROIRi ratios
of 1.50, 2.25 and 3.00 and far-field stress ratios of 0.5 and 0.1 Since this
was a nonlinecr analysis, the far-field stress ratio (ratio of minimum to
maximum far-field stress) differs from the crack-tip stress ratio (ratio of
minimum to maximum stress intensity factor). Furthermore, because of the
nonlinearityv, no effort was made to normalire the stress intensity factor
ranges in Figures 3-59 and 1-60. However, the crack length in the presenta-

tion has been normalized by the net ligament of each lug.

For normali:zed crack lengths less than about 0.35, the stress intensity

factor ranges are lower for an RO/Ri ratio of 1.50 and higher for increasing
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Figure 3-9J. Stress Intensity Factor Xanges for Steel Lugs
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R /K. ratios. For normalized crack lengths above 0.35, the trend changes to
h?gh:r stress intensity factor ranges for lower RO/Ri ratios. However,
expressed in terms of unnormalized physical crack length, ¢, the stress
{ntengitv factor for any given crack length 1s always higher for a lower

R /R, ratio.
[¢] 1

To assess and to have a feel for the effects of plastic yielding by
comparing with linear analysis, the stress intensity factor ranges are nor-
malized by Ax%A/ﬁE} where Ao, is the corresponding far-field stress range.
These normalized values given in Table 3-13 have limited significance in
the sense that these values are applicable to the specific material and load-
ing condition. The values can be directly compared with the normalized
stress intensity factor ranges given in Table 3-3 (applicable for R=0.1 and
R=0.5), which correspond to linear analysis, to evaluate the effect of plas-
ticity. Table 3-3 can be assumed to be applicable for both méterials,

since the differences were less than 3 percent.

Comparison of these two tables indicates that the normalized values of 4K
for the elasto-plastic analysis are lower for smaller c/(Ro—Ri) ratios and become
higher as the crack grows through the lug ligament. This is because of the
stress redistribution in the lug due to yielding. In the yield zone and its
neighborhood, the stresses will be lower when compared with the elastic
stresses. Away from the plastic zone, the stresses will be higher than .elastic
stresses, to satisfy the equilibrium. The above behavior is true, in generai;
however, for an RO/Ri ratio of 1.50 and a stress ratio of 0.1, the nonlinear
values are consistently lower than the linear values for almost all
c/(Ro—Ri) values. The reason for this behavioral change can be explained
as follows. For this particular lug configuration and stress ratio, there
is more plastic yielding as well as compressive residual stresses near the
lug hole at the minimum load. These negative stresses are truncated in the
stress intensity computation. Also, the net ligament length is the smallest.
For these two reasons, i.e., truncation of negative stresses and smaller
ligament size, the normalized values of stress intensity factor range never
become higher than those of the linear analysis. Also, note that due to
plastic yielding while loading and subsequent linear unloading, the normalized
values of K= 0.5 for lower c/(RO/Ri) ratios are greater than the corresponding

values of R= .l and clouser to linear elastic values given in Table 3-3.
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The elasto-plastic method can also be used to calculate tihe stress inten-
sity factor solutions for corner cracks emanating from attachment lugs that
ar~ subjected to loadings above yleld. The above through-the-thickless solu-
tion cap Yo modified with front-free surface, curvature correction, etc. for

corner crack problems, as in Equations (34) and (35) of subsection 3.
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SECTION IV

STKESS INTENSITY FACTOKRS FOR TAPERED ATTACHMENT LUGS

Tapered attachment lugs have been uted frequently in aircraft struc-
tural fittings to provide strength against off-axis iocading. To
determine the critical location and direction where a fatigue crack may
initiate and subsequently grow, it is necessary to determine the stress dis-
tribution of the unflawed lug and the stress intensity factors of the cracked
lug. This section describes the development of stress distribution and
stress intensity factors for tapered attachment lugs subjected to symmetric,

off-axis and transverse loadings.

1. STKESS ANALYSIS

Because of the complexity of the lug geometry and off-axis loading,
the finite element method was used to determine the tangential stress dis-
tributions along the edge of the hole in the unflawed lug. This analysis
was conducted for a pin load applied at Oo, 900, 1350, 1800. 2700, and 315o
measured in the clockwise direction from the axis of the lug. Figure 4-1
lﬁ depicts the geometry and typical two-dimensional finite element model used
‘ in the stress analysis of the unflawed lug. The angle between the two edge
surfaces of the tapered head, [3, is 45 degrees. The finite element model
shown in Figuce 4-1 consists of 429 nodes, 72 triangular elements, 348 quad-
rilateral elements, 28 spring elements, and a total of 850 degrees of free-
dom. A coucentrated force was applied at the center of the pin tc simulate
pin loading and was reacted at the base of the lug. The analysis was
carried out to determine the stresses in the lug and the pin-bearing pres-
sure distributions at the pin-lug contact area for the six loading direc-
tions mentioned above. Three outer-to-inner radius ratios of the tapered
head, {.e., Rofki - 1,50, 2.295 and 3.00, were evaluated. 1in all cases of
the analyeis, the rigidity of the pin was assuned to be three times the

rigidity of the lug, which simulates an aluminun lug loaded by a steel pin.

For the conventional tinite-element analysis using comnstant strain
elements, the values of stress and stvain obtained for a given element
. were assigned to the centroid loecation of that clement. To determine

the stress at the edge of the hole, the stresses at the ceatroids of a
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Figure 4-1.,

Finite Element Model for a Tapered Attachment Lug
Having a Rolki Ratio of 2.25
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series of elements located in the same radial direction were used to extrap-
olate to the edge location. This procedure was used to determine the tan-
gential stresses along the edge of the hole of tapered lugs having Ro/Ri
ratios of 1.50, 2.25 and 3.00. The results are shown in Figures, 4-2, 4-3,
and 4-4 for pin loadings applied in three principal directions, i.e., 0°,
-45° (3150), and -90° (270%), respectively. In each case, the tangential
stresses were normalized with the average pin bearing pressure, Opr? which
is defined as P/(ZRiB). where B 1is the thickness of the lug.

As can be seen from these figures, for each loading direction, there
are two local maximum tangential stresses located at each side of the load-
ing direction. The locations of these maximum stresses depend upon the
loading direction and RO/Ri ratio. For a pin loading applied in the axial
direction of the lug, as shown in Figure 4-2, the maximum stress locations
are found at about +85 to :90o away from the loading direction. The maximum
stress locations do not change significantly with the change of the Ro/Ri
ratio. When the pin loading is applied in the -45° direction (see Figure
4-3), for Ro/Ri = 1.50, the absolute maximum stress occurs at about 65°
measured from the axis of the lug (or 110° away from the load direction)
with the other local maximum stress located about 180° from the first. When
the RO/Ri ratio increases, the locations of the maximum stresses change
only slightly. However, the absolute maximum stress location switches from
the head side of the lug to the base side of the lug. When the pin loading
is applied in the direction perpendicular to the axis of the lug (see Figure
4-4), for all Ro/!(i ratios, the maximum stress occurs at the location in
the base of the lug at a § value of about 200° co 210°. Figure 4-5 summa-
rizes the locations of the local maximum tangential stresses at the edge of
the hole for each loading direction. These are the most critical locations,
where one would anticipate that a fatigue crack would initiate. For each
lug geometry and loading condition, Numbers 1 and 2 shown in Figure 4-5
indicate the probable order of crack initiation. They are chosen based upon
the relative magnitude of the two computed local maximum stresses. Stress
distributions along the x-axis for tapered lugs with Rolk‘ ranging from 1.5 to

3.0 subjected to symnetric loading are presented in Figure 4-6 and Table 4-1.

Larsson [47, 48] conducted fatigue testing of axially and transversely
loaded aluminum lugs having a Ro/Ri ratio of 2.2. He observed and tabu-

lated the locations of fretting and crack initiation for three different lug

119

LN
L R AL ey R



AR A A R R e A S Sak Al Al I A e D AN A A B R A M e A 0 i A A G S e S el i At A AL AL A S Al e e A
.

5.0 i

NORMALIZED TANGENTIAL STRESS, aJobr

-1.0¢

- o A s e i - 4

-%0 0 %0 180 270

ANGLE 9, DEGREES

Figure 4-2. Normalized Tangential Stress Distributions Along
the Edge of the Hole for Tapered Lugs Subjected
to a Pin Loading Applied in 0% Direction
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Figure 4-5. Fattgue Critical Locations of Tapered Lugs
Subjected to Various Load Orientations
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configurations. His results of crack initiation locations are summarized in

Figures 4-7 and 4-8 for a pin loading applied in the 0° and 90° directions,
B

respectively. As ceen from these figures, the curreant predicted fatigue
critical locations as well as the possible sequenre of crack initta-

tion agree well with these experimental data. These predicted critical
locations will be used in the modeling of the cracked lugs in the subsequent

fracture analysis.

The tatigue critical area of an attachment lug for a given loading di-
rection is not necessarily subjected to compression when the loading direc-
tion is reversed. Thus, fer some load orientations, the reversed fatigue
loading might have a significant effect on crack growth behavior. Figures
4-9 through 4-11 show the tangential stress distributions along the edge of
the hole tor a pin loading applied in the reversed direction of the thres
primary load orientations presented in Figures &4-2 through 4-4,
respectively. As seen from the figures, in most cases, the reversed
loading stretches the critical area in teasion, but the magnitude {s
reduced. Note that the result in FIjure 4-11 Is essentially the same
as that in Figure 4-4 except for the definition of the angle § . Plots of
the stress concentration factors at the edge of the hole in logarithmic
scales, as shown in Figure 4-12 for symmetrically loaded tapered attachment
lugs, reveal that a simple empirical formula can be derived and the relation-
ship is given by the equation o

(5.675 -

I
R Tmax ﬁo R 1000

[¢]
w "5 Ty o (49)
br i

)
K

o A
where is the taper angle of the attachment lug in degrees. Note that
. . . (o] R - N
for straight lugs (/3 - 07) the above equation reduces to that given in

Figure =%,

The stress concentration factors were obtained by normalizing the peak
tangent ial stresses wich the average pin bearing pressure, Toe® The equa-
tion of the logarithmic straight lines shown in Figure 4-12 compares with
the tinite element solution within 0.8 percent for tapered lugs. The values
camputed by the above equation and the finite element methad are alse listed
in tabular form in Figure 4-127 tor comparison. This simple empirical equa-
tion tay be used for interpolating tor taper angles less than 44" or extrap-

olating tor RO/Ri values outside the range of 1.5 and 3.0, The values of
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NORMALIZED TANGENTIAL STRESS, O‘J’Obr

0.8 ¢

0 90 180 270

ANGLE, 6, DEGREES

Figure 4-9. Normalized Tangential Stress Distributions Along

~~~~~~~~~~~~~~

the Edge of the Hole for Tapereg Lugs Subjected
to a Pin Loading Applied in 180 Direction
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Figure 4-10. Normalized Tangential Stress Distributions Along
the Edge of the Hole for Tapered Lugs Subjected
to & Pin Loading Applied in 135° Direction

.........

-90 0 %0 180 270

N S
P Y SR L



4.0

3.0

2.0

1.0

0.0

NORMALIZED TANGENTIAL STRESS, ae/ab‘

)
o

ANGLE g OEGREES

Fivure 4-11. Nortalized Tangential Stress Distributions Along
the Ydze at the Hole tor Yapergd tugs Subjected
to a Pin lLoading Applied in 90 ODirection
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Figure 4-12. Elastic Stiess Concentration Factors
for Tapered Attachment Lugs
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the stress concentration factors presented in Figure 4-12 correspond t: the

f = 190o locations., The actual maximum tangential stress location is be-
tween :850 and :900. From a knowledge of the stress distributions, it {is
anticipated that there will be no appreciable difference in the solutions.
Also, in the fracture analysis of tapered lugs subjected to a pin loading

in the axial direction, the crack surface will be assumed to be in the plane
perpendicular to the loading direction. However, for off-axis loadings of
i&SO and :900, the crack surface will be assumed to be in the critical loca~

tion as predicted by the strcss analysis.

The computed pin bearing pressure distributions along the contact sur-
faces with no cracks present are presented in Figures 4-13 through 4-15 for
o, —450, and

o . co . .
90", respectively. Similar resulits obtained ior the reversed loadings of

pin loadings applied in the three primary directions, i.e., O

180° and 135° are presented in Figures 4-16 and 4-17, respectively. ror the
reversed loading of 900, the contact pressure can be obtained from Figure
4-15 by redefining the angle ) as previously discussed.

A STRESS INTENSTTY FACTOR ANALYSIS

Based on the stress analyeis of unflawed tapered attachment lugs, the
most critical locations were selected for the fracture analysis to obtain
the stress intensity factors for various crack lengths. The special high-
order crack tip singularity element [8] was again used in the present analy-
sis to calculate the stress intensity factors. In the analysis, it is
assumed that, tor a given tapered lug subjected to a specific direction of
pin loading, the crack will initiate from the maximum tangential stress
location at the hole and propagate radialiy. Figure 4-18 shows a typical
finite element model which was used for a single through-the~tiiickness crack
emanat ing from a tapered attachment lug subjected to a pin-loading applied
in the 0% and 180° directions. The crack surface is assumed to be in the
plane perpendicular to the loading direction. The finite element breakdown
consists of 3bb nodes, 190 triangular elements, 228 quadrilateral elements,
32 spring elements, 1 crack-tip element and a total of 724 degrees of free-
dom. The computed normalized opening mode stress intensity factors, as a
tunction of normalized crack length, tor single through-the-thickness cracks
in tapered atrachment lugs having RO/Ri ratios ranging trom 1.5

to 1.0 are presented in Figure 4-19 and Table 4-7. The normalized stress
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Figure 4-13.

ANGLE 9, DEGREES

Pin-Bearing Pressure Distributions Along the
Contact Surface of Tapered Lugs Subjected to a

Pin Loading Applied in 0° Direction
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Figure 4-14. Pin-Bearing Pressure Distributions Along the
Contact Surface of Taperedohuqs subjected to a
Pin Loading Applied in -45  Direction
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Figure 4-15. Pin-Bearing Pressure Distributions Along the
Contact Surface of TapeteqoLug: Subjected to a
Pin Loading Applied in -390 Directionm
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Pin Loading Applied in 180 Direction
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Figure 4-17. Pin-Bearing Pressure Distributions Aloang the
Contact Surface of Taperedohugs Subjected to a
Pi{n Loading Applied in 133 Direction
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Figure 4-18. Finite Element Mode! fer a Gracked Tapered Lug
E Sgbjected go a Pin lLoading Applied in
= 0" and 180" Directions
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intensity factor values at the lug hole, i.e., c/Ri = 0, were obtained by
multiplying the concentration factors determined from the unflawed stress
analysis by 1.12, which was derived by Gross et al [21] for a straight edge
crack in a large plate subjected to remote tension. The trends of the above
tapered lug solutions are very similar to those obtained for straight lugs.
Similar solutions of normalized stress intensity factors as a function of
normalized crack length for tapered attachment lugs subjected to pin load-

ings applied in the 180° direction are presented in Figure 4-20.

The analysis was then extended to tapered attachment lugs subjected to
off-axis loadings of —450, 1350, -90° and 90°. A Ro/Ri ratio of 2.25 was
considered for the off-axis loading fracture analysis. Figure 4-21 shows
the finite element model used for analyzing a single through-the-thickness
crack emanating from a tapered lug subjected to a pin loading applied in
~45° and its reversed (1350) direction. The model contains 401 nodes, 224
triangular elements, 218 quadrilateral elements, 34 spring elements, 1 crack-
tip element and a total of 794 degrees of freedom. Note that although
there are two critical locaticns modeled, 58° and 227 measured from
the axis of the lug, only one crack was analyzed at a time. The computed
normalized stress intensity factors are shown in Figure 4-22 as a function of
the normalized crack length. This figure shows that when the crack length
is small, say c/Ri < 0.15, the stress intensity factor for a crack located
closer to the base of the lug is higher than the one located at the hxad side
of the lug. When the crack length increases (c/Ri > 0.15), the stress inten-
sity factor for a crack located at the head side becomes larger than the one
lccated at the opposite side of the lhole. The difference between the two
computed K-values increases as the crack length increases. For the case when
the direction of the applied pin lsading is reversed, the stress intensity
factors are also computed and included in the figure for a crack located at
the head side of the lug. The surfaces of a crack located closer to the base
of the lug are completely closed during the reversed loading. The computed
K-values corresponding to the reversed loading are much smaller than the
corresponding ones obtained under the primary tensile loading. 1In the above
analysis, only one crack was assumed to exist at a time. However, in reality,
both cracks may exist and grow at the same time. 1In such a case, the influ-
ence of one crack on the stress intensity factor of the other crack way be

sipnificant. This can be accounted for by developing a matrix of stress
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NORMALIZED STRESS INTENSITY FACTOR, K/(crbr Vv Tc)
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Figure 4-20. Normalized Stress Intensity Factors for Single
Through-the~Thickness Cracks Emanating from
Tapered Attachment Lugs Subjected to a Pin
Loading Applied in 180° Loading Direction
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Figure 4-21. Finite “lement Model for a Cracked Tapered Lug
Subgected to a Pin Loading Applied in
-45% and 135° Directions
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Figure 4-22. Normalized Stress Intensity Factors tor Single
Through-the-Thickness Cracks Emanating from a
Tapered Lug Subjected to a Pin loading Applied
in -45" and its Reversed bDirections
(RO/Ri = 2.29)
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intensity factor solutions for various crack lengths of both cracks. This
matrix of solutions may then be used to accurately estimate the stress in-
tensity factor for either crack. However, such an effort is not made in the

present analysis.

A similar finite element model to the one shown in Figure 4-21 was used
for a tapered lug subjected to a pin-loading applied in the :900 directions.
Two critical locations, 43% and 205° measured from the axis of the iug, were
determined from the results of the stress analysis of an unflawed tapered
lug subjected to a pin loading applied in the -90° direction. Similar to
the -45° loading case, only one crack was analyzed at a time, though two
critical locations were modeled. The computed normalized stress intensity

factors are shown in Figure 4-23 as a function of the normalized crack length.
The figure shows that when the crack length is smaller than 0.85 Ri’
the stress intensity factor for a crack located closer to the base of the lug
is higher than the one located at the head side of the lug. When the crack
length increases (c/R1 > 0.85), the stress intensity factor for a crack
located at the head side becomes larger than the one located at the opposite
side of the hole. For the case when the direction of the applied pin loading
is reversed, the stress intensity factors are also computed and included in
the figure for a crack located at the head side of the lug. The surfaces of
a crack located closer to the base of the lug are completely closed during
the reversed loading. The K-values corresponding to the reversed loading are
smaller than the corresponding ones obtained under primary tensile loading.
iowever, these magnitudes are significantly larger than the corresponding
ones obtained tor a case where the pin loading was applied in the 135° direc-

tion.

Based on the current unflawed stress and stress intensity factor analysis,
one may conclude that, among the principal pin loading directions of 00, -45°
dnd-QU“, the loading of -457 iy the most severe loading case from the point of
view of Yatigue crack fnitiation and fatigue crack propagation. Also, when a
tapered lue haviong 2 Rn/Ri ratio of 2,25 {s subjecred to cyelic fatigue pin
loading in -45" and =90 directions, a crack will probably {nitiate at the
critical location closer to the base of the luy first. When this crack
propagates, a second crack will fnttiate at the head side of the lug. Eventu-
ally, the growth of the base—xide crack will slow dowm while the growth rate of

the headeside vravk will increase and exceed that of the base-side crack. The
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lug will finally fail from the head side, Failure modes experimentally

.

studied by Larsson [46] for tapered lugs loaded in the -90° direction are

very similar to those discussed above.
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SECTION V

CRACK GROWTH ANALYSIS METHOD

Linear elastic fracture mechanics methodology is discussed in this
section to predict crack growth in damaged attachment lugs. An accurate and
efficient prediction of crack growth from an initial crack length to a criti-
cal or final crack length,whea subjected to a prescribed load history, de-

pends on a damage accumulation package containing the following four basic

elements:

o Applied load spactrum
o Stress intensity factor solution
o Baseline crack growth rate data or crack growth rate equation

o Spectrum load interaction model.

The applied load spectrum is the loading sequence or history the attach-
ment lug is subjected to for which the crack growth prediction is to be made,

and is therefore basically an input for the problem.

[t is generally accepted that the stress intensity factor controls the
rate of propagation of a fatigue crack in structural components. Any cracked
structure can be expected to respond in a predictable manner to a given
applied load spectrum if its associated stress intensity factor solution is

available. The development of such stress intensity factor solutions was pre-

sented in the previous two sections for straight and tapered attachment lugs
for various configuration, design and loading complexities.

The response of the crack is usually given in the form of constant
amplitude fativue crack propagation rate, da/dN, as a function of stress
intensity factor range, AK. These baseline material provertv data are
obtained exnerimentally and can he exnressed in either tabular or eauation

form, {.e.,

da .
7 - 6
Eﬁ f (AK, ceeves) (46)

Paris' [49], Forman's [%0] and Walker's [51] eq:ations are some of the

typical representative crack prowth-rate equations which will be discussed
in this section.

149

. B

.t v cc et

ATV VY Y IR
[ Y

* . o A Pt . AT . Ay R I L
TP SR W SO S 5 YW VUL ST S LY SR WU S SO ORI, S W . AL WIS ¥ T W A Y NPT SRR R W WY WY WLAPNS IV

DA




The normal crack growth rate under constant amplitude loading changes
if the load cycle is preceded by a different amplitude load cycle. As ex-
amples, a tensile overload causes permanent plastic deformation at the crack
tip which in turn delays the crack growth at subsequent low-load cycles,
while the compressive underload may accelerate the normal crack growth.

To account for such spectrum load-interaction effects. several crack-
growth retardation models have been proposed. Models such as Wheeler [52],
Willenborg (53], Generalized Willenborg [54] and Hsu [55] will be discussed

in this section.

1. CRACK GROWTH RATE EQUATIONS s

A large and growing volume of crack growth data are available. Most of the
data are expressed in terms of AK versus da/dN. In this relationship,

there is a threshold value of K , say K below which a flawed structure

s
can be cycled without measurable crack exttnsion. At the other extreme is
KC , called fracture toughness, a value of K at which a flaw will propa-
gate unstably. Therefore, fatigue crack growth must occur in the range
Kth to Kc. All crack growth rate data available for establishing the
da/dN versus AK relationship fall within this range. Normally, data

show some experimental scatter, and the least-square mean line representa-
tion of all test data is used to establish the AK versus da/dN relation-

ship.

Several methods of using the mean data to describe crack growth rates
have been proposed. Of these methods, three well established
crack propagation equations are used most. Thev are proposed
by Paris et al [49], Forman et al [50], and Walker [51]. Paris' equation is
limited to cases where a constant stress ratio, K, is applied. Forman and
Walker's equations are more general and applicable to cases where variable

loads exist in the load spectrum.

Accuracy of the predicted crack growth life, using any crack growth
equation, depends upon accurate values of da/dN wversus AK and correct

stress intensity factor values for a particular geometry.

1.1 Paris' Equation

The crack prowth rate equation proposed by Paris, et al, is of the

following form:
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n
da/dN - Cp (AK) P 47)

where:

da/dN = rate of crack growth (inch/cycle)

cp and np are constants for a particular stress ratio

).

AK - stress intensity factor range (K - K
max min

Paris' equation has been an effective regression equation for crack
propagation rate in unreinforced {lat specimens under constant amplitude
loading. However, it is not successful in pooling such data for more than

lo ).

one value of stress ratio kR, (g .
min "max

1.2 Forman's Hquation

In an effort to extend Paris' equation to cover various Stress ratios,
and to take into account the instability of the crack growth when the stress
intensity factor approaches its critical value for a given material, Forman,

et al,modified Paris' equation as follows:

g
cf(AK) (48)
. 8
da/dN (1-R)K - AK
<
where:
<y and Ae = wmaterial constants

KC critical stress intensity facutor

Because ot crack-tip bluanting which is produced by cyclic strains in
the material ashead or the advancing crack, it is important to select the
appropriate Kc value. “The choice of a Kc value larger than the tracture
toughness of the material normally will give a better result i{a establishing
K versus da/dN relationships. [! the available data {ncludes more than
one K-ratio, Rc should be used as 3 curve titting parameter to force the

best fie for all avallable data.

1951



1.3 Walker's Equation

Roberts and Erdogan [56] proposed that stress ratio effects in the power

law region of the crack growth rate curve could be described using

P Py
da/dN = ¢ (K . AK 7) (49)
max

Walker [51] reformulated the equation so that the stress ratio would be :

explicit and it had the form
ol P
da/dN = ¢ [K (1 - R») (50)
max
where ¢, m and p are material constants.

L

Determination of Constants in Paris' and Forman's Equations

Taking logarithms of both sides of Paris' and Forman's equatiomns and re-

arranging terms, they become, respectively,

-

log (da/dN) = log cp + np log (AK) (51)

and

+ n_ log (AK) (52)

log {[(1 - R) K, = AK] da/dN}= log ¢

£ £

For any two given coordinate points, say AKi’ da/dN, and Axiol’
ﬁa/dN“l which represent a segment of the growth rate curve, one can solve

the two simultaneous equations for the unkowms ¢ and n.

2.  SPECTRUM LOAD INTEs.. .TION MODELS

The majority of crack groweh studies have been carried out for constant
stress amplitude because of the simplicity (n testing aad because the data
can be preseanted in a straightforward manner. In actual practice, eugineer-
ing components are subjected to ioads which are often irregular and varv in
a raadan wanner. Fluctuating loads due to atwespherie turbulence on aircrafe
are typteal examples of random loadings. The difterence between the cunven-
tional fatigue experiments and the actual laadisng of the corponents has led teo
the development of various crack analysis approaches. As discussed ir a pre-

vious section, normal erack growth rate under constant amplitude loading

changes i the load application is preceded by 3 loading cycle of a different




amplitude. The tensile overload cAuses permanent plastic deformation at the
crack tip which in turn delays the crack grewth at subsequent low load cycles,
while the compressive overload may accelerate the normal crack growth. The
importance of delay in the vrate of fatigue crack growth, as produced by ten-
sile overloads, on the accurate prediction of fatigue lives of structures has
been recognized, and quite a few investigations have been stimulated in this

area.

Several models have been suzgested to account for the effects of delay
on the prediction »i fatigue «rack growth. Those models use the plastic-
zone size (for either plane stress or plane strain) associated with the
applied load levels Lo characterize the load--interaction effect. These
modeis assume that if the size of the plastic zone, rp, developed due to
application of the current load cycle at crack length a extends to or past
the extremities of a previously developed load-interaction zone, a , (i.e.,
(a + rp) 2 ap), there will be no load interaction and the growth rate asso-
ciated with the current load cycle is the same as the one generated under
constant-amplitude loading. Conversely, the crack-growth rate would be re-
duced (retarded) if rp < (ap - a). Some of the most often referenced

retatvdation models are described below.

2.1 Wheeler Model

The first retardation model proposed was that of Wheeler [52] who sug-
gested the use of a reduction factor on the constant amplitude crack growth

rate:

da

xS f (AK) (53)

where cp is a retardation parameter defined as

n
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o
3
o.
3
il

shaping exponent

o
it

extent of the current yield zone

o
t
o
i

the distance from crack tip to elastic-plastic interface

This model requires previous spectrum growth data to derive an empirical
“shaping exponent,” m. Although it is a substantial improvement over the
linear cumulative damage rule, this model is more of a data fitting technique
than it is a predictive technique. Besides, the exponent in Wheeler's re-
tardation parameter is dependent not only upon the material, but also upon
the manner in which sgpectrum loads were applied. For any design spectrum
different from the ones used to generate the test data, the exponent m

may be very different,

2.2 Willenborp Model

As mentioned earlier, the rate of propagation of a fatigue crack is
controlled by the stress-intensity factor at the crack tip. Therefore, the
magnitude of the stress-intensity factor is a good indicator of the extent
of crack tip deformation. Siunce the cyclic crack tip deformation is reduced
due to prior overloads, the model of Willenborg et al [ 53], which uses an
"effective stress' concept to reduce the applied stress, and hence the crack

tip stress-intensity factor, seems more appealing. The model is described

as

da :
dan © t l(AK)eff’ (Kmax) ] (54)
eff
whare
(AK) .. = (K ) - (K .
eff x of £ wmin ef§

P eif )efi g
(K | = (¢ Ta
min if in CFF T
(Omax " Ymax " Vred
eff
(Dyin) T amﬁn “Cpud
el
ved th ~ g, or 2erc shichever {s larger
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. ) S 2 (55)
th ﬁT \4 a_
and
a, = the crack length at the beginning of the load cycle
after the overload
ap - a_ = current plastic zone caused by the overload
ty = tensile yield strength of the material
BT = total geometric correction factor

This model can be used to predict the fatigue crack growth under spec-
trum loading without the assistance of empirical factors or data. Although the
model gives fairly jood predictions for crack growth under moderate spectra,
it tends not to give good correlations for spectrum loading with high over-
10ads, especially overloads exceeding 150 percent of the maximum of the low

load.

2.3 Ceneralized Willenborg Model

According to the Willenborg et al model, if the overload ratio,
OL
K

maxfgmax’ is greater than or equal to 2.0, a zero effective stress-intensity

tactor will be predicred and the crack will stop growing. However, experi-
mental data contradicts such a prediction. Gallagher [54] modified the

Willenbory eguation for eifective stress I(ntensity factors as follows:

max

and (56)

ol A 1/2

. K -d : - 23 - K

(Kmin) . kmin ‘)[#max (1 r ) max
cf; OL

or zero, whichever is larger.




The factor ¢ 1s defined as

t- (Kmax) h/Kmax
- T (57)
SSO -1

in which (Kmax) is the maximum threshold stress intensity factor, and
Th

S is the "overload shut-off ratio.'" When KOL /K > S.., crack arrest

SO max’ max S0

occurs. Note that the original Willenborg model is recovered by setting
¢ = 1.
2.4 Hsu Model

The Hsu model [55] developed at the Lockheed-Georgia Company utilizes an
effective stress and closure concept. It assumes that the stress singularity
does not exist if the crack surface is closed and that the crack propagates only
during that portion of the load cycle in which the crack surface is fully
open. Let a, be the crack-opening stress, i.e., the corresponding far-
field stress at the onset of crack opening. Then the effective stress range

of the load cycle during crack propagation can be defined as

Ao'eff “ Omax ~ % (58)
When the opening stress is less than the minimum stress of the applied

load cycle, the effective stress range is given by

B0ff ~ Tmax ~ Cmin (39)
If the maximun stress of the applied load cycle is less than the crack
opening stress due to prior loads, the crack surface will be fully closad.

Hence, the fatigue crack will not propagate,

However, experimental evidence indicated that belsow the closure K,
strain concentration at the vicinity of the crack tip still exists. Since
fatigue damage is normally related to the cyclic strain range, the effective
K is likely ro he somewhat lower than the level at the onsest of closure

min

and higher than K . = under steady state (constant amplitude) conditions,

The effective stress range and the effective load ratio c¢an then be re-

written as
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ACggg =G ~- (o in (60)

Rogg = Onin) /o (61)

respectively, where Omin S @ _.) <Tgt

For any given load cycle, the effective stress-intensity factor can

then be calculated from the equation
= vV
OK ce =A0 ¢ +VTa . BT (62)

The crack growth rate associated with this applied load cycle is com—

puted from the growth rate equation

93.—{(43&

dn eff' Regrr ~) (63)

For a given loading spectrum, if one can determine the effective mini-
mum stress corresponding to each load cycle, the fatigue crack propagation

life can be predicted.

3. CRAGK GROWTH ANALYS1S PROGRAM

A computer program has been developed using the state-of-the-art
methodologies including the stress intensity factors developed under
this program for the prediction of fatigue crack growth behaviors of single
through-the-thickness cracks and single corner cracks at attachment lugs
under cyclic loading. All the data presented in Sections II! and 1V, such as
stress analysis, fracture analysis, Creen's function, interference-fit
bushing analysis, etc., have been embedded in the computer program to make
it as automatic and simple as possible. This computer program contains the
three crack growth rate equations discussed above. There are five ditferent
options to input each individual mission load profile from which a mission
mix spectrum can be genzrated. The program predicts the crack growth using a
block-by-block intepration technique. Crack growth may be analyzed with or

without load-interaction using any of rhe models described above.
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For through-the-thickness cracks, either the compounding solution or the
Green's function solution can be used in the prediction. In predicting the
growth behavior of a single corner crack, the crack may be analyzed by
either the one-parameter (i.e., constant a/c ratio) or two-parameter method.
For one-parameter analysis, the prediction is straightforward amd is
similar to through-the-thickness crack prediction. For two-parameter
analysis, it is assumed that for a given number of applied load cycles, the
extension of the quarter elliptical crack border is controlled by the stress
intensity factors at the intersection of the crack periphery at the hole
wall and the lug surface, i.e., !(A and KC, respectively. In general, the
stress intensity factors at these two locations are different, resulting in
different crack growth rates. Therefore, the new flaw shape aspect ratio after
each crack growth increment will be different from the preceding one. The new
crack aspect ratio is computed using the new crack lengths on both the hole wall
and lug surface. The process will be repeated until thecrack length along
the hole wall is equal to the lug thickness. At that time the transitional
crack growth criteria as discussed in Section I1I are used until the crack
has achieved a uniform format. After that, if the failure has not occurred,

a one-dimensional through-~the-thickness crack analysis is used to contin-
uously predict the subsequent crack growth life. The analysis is considered
to be complete when fracture occurs or when the desired final crack length

or the maximum usage time is reached.

A detailed description of the computer program along with the input

instructions is provided in Reference [57},
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SECTION VI

SUMMARY OF RESULTS

Analytical methods have been presented to predict both fatigue crack
growth and residual strength of cracked attachment lugs. Each crack growth

analysis includes the following elements:

o Stress intensity factor solution

o Baseline crack growth rate relationship

o Applied load sequence

o Spectrum load interaction model.

0f these, the emphasis in this report has been upon the calculation
of stress intensity factors, covered in Sections IIT and IV. These sections
have been followed by a discussion in Section V of the alternative constant

amplitude fatigue crack growth rate relationships and spectrum load inter-

action models.

The following summary paragraphs are intended to provide an overview
and to tie together the content of this report and aid the reader in using

the analytical methods and results that have been presented.

1. SUMMARY OF STRESS INTENSITY FACTORS FOR STRAICHT LUGS (SECTION 111)

Section [l has covered the calculation of stress intensity factors
for straight attachment lugs subjected to axtal loading. Several alternative
methods have been discussed, including the simple compounding, two-dimensional
cracked finite element, weighting function, and three-dimensional eracked
finite element methed, Parameters and complexities covered in the stress
intensity tactor solutions presented {n this section are outer-to-inner radius
ratio (1.5 te 3.0), erack geometry (single corner eracx, through-the-thick-
ness crack, and the intermediate transition) crack leagth (measured on lug
tace and aleng bore of hole), change in disteibution of pin bearing pressure
dur te erack length change, ratio of pin medulus te lug medulus (1.0 er 3.0),
interference~fir bushings, and elastoplastic analysis when the peak stress

at the hole exceeds the material tensile yield streagth,
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A two-dimensional finite element analysis has been used to compute the
stress distribution in the uncracked lug for lugs of various Ry /Ri ratios.
The major useful results of this analysis are the stress distribution along
the potential crack path (Table 3-1) and the stress concentration factor
(Figure 3-5). .

The compounding method combines known solutions to obtain an engineer-
fng approximation for the stress intensity factor, Equation (10). Stress

intensity factor values calculated by this method have been listed in Table
3-2,

The two-dimensional cracked finite element method properly models the
crack tip stress singularity and the distribution of pin bearing pressure,
which changes drastically with crack length (Figures 3-14 through 3-16).
The stress intensity factor results from this method have been shown in

Figure 3-18 and listed in Table 3-3.

The weighting function method calculates the stress intensity factor
as the integral of the product of the stress in the uncracked lug times the
Green's function for the lug; Equation (14). The Green's functions for
straight lugs, developed using two-dimensional cracked finite element analyses
with point loads applied on the crack surface, have been listed in Tables 3-4
through 3-6., However, these "original" Creen's functions, when used with
the stress distribution in the uncracked lug from Table 3-1, obtainm K, results
at variance with those of the two-dimensional cracked finite elemeat analysis.
The discrepancy arises because the Creen's function method fails te account
for the change in the distribution of pin bearing pressure. To correct the
diserepancy, the original Green's functions have been modif{ed such that the
cracked finfte element results are exactly duplicated when these ‘'wodif{ied”

Green’s functions (Tables 3-7 through 3-9) are used.

Figure 1-29 compares the stress intensity facrors for through-the-thick-
ness cracks computed by the various methods, Reasomable agreement amoang all

methods is obtained at R /R, ratios of 2.25 and 3.0, but not at ROIRi = 1.%0.

Thus, any wethod could be used for larger &0/2i rat{os, but the more rigorous
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two-dimensional cracked finite element method (or equivaleatly, the Modified

Green's function method) is preferred for RO/Ri < 2.0,

The weighting function method can be applied to account for residual
stresses caused by a shrink-fit bushing. Assuming the lug and bushing remain
in intimate contact during loading, the stress intensity factor is calculated
by Fquation (24) from the sum of the residual stress caused by bushing in-
stallation plus the distribution of stress caused by the applied load. The
residual stress is estimated from the closed-form solution for two concentric
cylinders, Equation (30). The applicd stress is obtained from two-dimensional
finite element analysis of an uncracked lug in intimate contact with a neat-
fit bushing. Tf the bushing and lug are of the same material, then the applied
stress distribution can be obtained from Table 3-1. Sample applied stress dis-
tributions for various bushing/lug modulus ratios are shown in Figures 3-33
and 3-34. It is to be noted here that this method can give unconservative
results when separation occurs betwsen the bushing and lug. In such instances,

an improved methodology has been developed and is presented in Volume IIT of

this report.

“e solution methods for through-the-thickness cracks can be modified
to analyze a corner crack, utilizing a corner crack correction factor, along
with a method to account for the transitional behavior as the corner crack
becomes a through-the-thickness crack. 7Two alternative correction factor

approaches have been sugpested, a one-parameter and a two-parameter method.

In the one—parameter method the flaw shape ls assumed to be constant
(e.ge, a/c = 1.V3) and the srress intensity factor at the lug surface point
(Point C) is calculated using Fquations (31) and (32). These equations apply
to the crack throughout its growth from a corner crack, through transition, to

a through-the-thickness crack.

In the two-parameter method, FEquations (33) through (16) (in conjunction
with Figures 175, 176 and 173 of Reterence [36]) are used to compute stress
fntensity favturs 40 the lus surface and hole wall (Points ¢ and A). During

the tranaition to a4 through-the-thickness vrack, Equations (37) through (40)
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are used to compute stress intensity factors at the front and back surface.

A three-dimensional cracked finite element method, although too ex-
pensive for general application, has been used to check the accuracy of the
one and two-parameter cormer crack solutions. Comparisons of stress intensity

factors are shown in Figures 3-46 through 3-50 and comparisons of corner crack
correction factors are shown in Figure 3-51,

Au clastoplastic analysis has been described for use when the peak
stress in the uncracked lug exceeds the material temsile yield strength.
Using the stress-strain curves of Figure 3-52, an iterattve finite element
analysis with incremental loading and unloading is used to calculate the
stress distributions in the uncracked lug for the maximum and minimum loads
of the fatigue cycle. These stress distributions are used with the modified

Green's function to estimate K and K for a lug with a through-the-
max min

i
thickness :rack. Sample results for AK have been given in Figures 3-59 and
3-60 and 7able 3-13. This nonlinear method is inexact and only an approxima-
tion, because strictly speaking the validity of the Green's function method

requires linearity between load and stress.

2. SUMMARY OF STRESS INTENSITY FACTORS FOR TAPERED LUGS (SECTION 1V)

Section 1V covers the calculation of stress intensity factors for ta-
pered attachment lugs subjected to either axial or off-axis loading. Only

unbushed lugs with a 45-degree included taper angle are analyzed.

A two-dimensional finfte element analysis has been used to calculate
the stress distribution in an uncracked lug. For axial loading, the peak
tangential stress i{s located at approximately 90 degrees to the lug axis
(Figure 4-5), and the stresses along the 90-degree line are listed in Table
4-1 tor five values of RO/R‘. Equation (45) is an equation for stress con-
reatration tactor for axial loading of a tapered lug with a vaper angle be-
tween O and 45 degrees. For off-axis as well as axtal loaaing, the aagular

locations of peak stresses are given {n Figure 4-95,

Stress intensity factors for tapered lugs have been calculated by twe-

dimensional cracked finite element analysis. Stress intensity factor results
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are listed in Table 4-2 for axial tension loading (and plotted in Figure 4-20
for axial compressive loading) of tapered lugs having Ro/Ri ratios from 1.5
to 3.0. Off-axis loading solutions for stress intensity factors are plotted,
in Figures 4-22 and 4-23 for a tapered lug with Ro/Ri = 2.29, loaded in the
-45 and -90 degree directions, with a crack at either of the two most criti-

cal locations.

For corner cracks in tapered lugs, the corner crack correction factors
presented in Section TIT can be used in conjunction with the appropriate
through-the-thickness stress intensity factors. For problems involving bush-
ings or stresses above the material yield strength, the weighting function
would be needed for tapered lugs for each new loading direction and crack
orientation. As an approximation, the Green's function for the axially-
loaded straight tup with the same Ro/Ri ratio may be used although the ac-
curacy of this approximation is questionable, particularly for off-axis load-

ing.

3.  SUMMARY OF FATIGUE CRACK GROWTH ANALYSTS METHODS (SECTION V)

Crack growth analysis methodology has been briefly summarized in Sec-
tion V. Alrernative constant amplitude fatigue crack growth rate equations
described include those of Paris [49], Forman [50], and Walker [51]. Alter-
nat .ve spectrum load interaction models summarized are the Wheeler [52],
Willenborg 193], Generalized Willenborg [54] and Hsu [55]) models. The selec-
tion of a rate equarion and retardation model is left to the discretion of

the analyst who is conducting the cra‘k growth analysis.
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APPENDIX A

MODE 1 STRESS INTENSITY FORMULAS
RELATED TG CRACKED LUGS
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LINE CRACKS IN OOUBLY INFINITE PLATES
CASE 11, Unmiform Tengpite Stress

S T T T Kyy @ Syhag

s ‘ ‘ ‘ Numaericat Exampie: § = Vg * 3 K" s 3.06998

CASE 12. Centrai Spittting Farces on Crack Surfaces

where t & thicknass

"12'7‘/—4:—:'

. Numericat Example: 1, P =y ¢t =06 K,z = (.54289

CASE 13. Arbiteary Splitting Forces on Crack Surfaces

(1) 3, A
K3 * "tz\/‘g—‘aou
{2 vy
i3 ° “xz\/é:;,a_l

NOTE. x5 negative if force is apphied
closer 19 crack up {1},

{n {2}
Numetical Exampis: & 6" Jre 1 Pay e Ku s 0,78178, Kn s (0.38183
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LINE CRACKS IN INFINITE-LENGTH STRIPS

CASE 21, Symmetnic Crack, Uniform Tension

bt ot

)

¢21(\,) ‘\/sec (XD)

Kap = Kyy @

Numertcal £ xample.
3 " Jb=8,8 =1 Kyy = 3.3668

CASE 22. Symmetnc Crack. Central Spl tting Forces on Crack Surfaces

B P R S “‘Q wa
p K2 * K12 ¥ <2b v22\2
e -—.—L.——- i _ \
° b L T W
o ——
t |
|’-’—.~"—~1
GJ ' Du
P
e~ Numericai Exampie

3, * 3.0 =8P =1t 08 Kyy ¥ 063125
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CRACKS AT HOLES IN DOUBLY INFINITE PLATES

CASE 31. Single Crack, Tension Normal to Crack

t st ¢

:
— !
K31 2 SJTT“ 03‘ <a‘¢(>

ugy (py) * exo (12133 -2.205 p, + 0.6451 p,7)

Numerical Example:
4y * ,r=18=1 K.‘H = 2583

CASE 35. Single Crack, Distributed Splitting Forces at Hole

o
K3g = Kyg  ®3q (Py) ugg (P))

uyg () = exp[O.IS (p,z-n]

x=a‘/2,a° = rex

Limitation: Total toad P results frem uniform radial pressure trom
/8 to /8 and -n/8 to -1n/8. (K drops drastically if prassure is
applied between -17/8 and v/8),
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CASE 26. Unsymmetric Crack, Uniform Tension (b, < by

s
tr 4441 S
By AL Kog ™ Kqp % g6 (M, An)
C ) {n)
b, Atlnl: Ko = K116 (M,kn)
o], o
(n) b _— q)(” ) 1+L/sec()\ml -1

i 2 E +0.21 sin{S arctan [(i\::))::)o.g] }

w ~ ““26 1 2 e,
VI o Lo (T e

by-. b

NI
Ne* 8b-2b, Ay 2b,, nf 7% TN
CASE 27. Unsymmetric Crack, Central Splitting Forces on Crack Surfaces
{1 {1,
B I o P I = ¢ (A . ) 1] (A }
Kag = Kiz ¥ g5 M Aol v221Aa
|- b
n
R @ . M
(2 ; Yugg Op)
p KZ K]3 4 26(>\f,?\n 22 'Ani
(2)
n p
x = b-by, Combining ot Cases 12, 13, 21
. 22 and 26.
<———b——-+-— —
b . = 1ty PStress
] Voo {(1—-w): P, Strain
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CRACKS AT CENTRAL HOLES IN INFINITE-LENGTH STRIPS

CASE 41. Single Crack, Uniform Tension

™ inpag) @ g9 ()

Kgp = K33 @6
3
) 1
hn = b-‘-z-
ol
‘0 = rb-f
]
1
b' = b’—z‘

Combining of Cases 11, 21,
26 and 31

CASE 44. Single Crack, Distributed Splitting Forces at Haole

--"——\_1
L I Kea * Kgp @ 11811 @9, 0 ) uggl9y
44 P2 Bl ) Dl M 3 REAT Lk L Al |
~-wt l ! ro—
a . P Limitation: Same load Combining of Cases 13, 21,
[’ 1] distridution as 21,31 4nd 38
Case 35.
p Dependent Variables:

3, l,f* xva,/2.b“‘b-xmdao=na‘/2
o - 'bn -’-"39 -
e e T N
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CORNER CRACKS, UNIFORM TENSION

CASE 71. Quarter-Circular Corner Crack Which Becomes Through Thickness

(c) ()
- C
R u3'(w>¢n

¢ ¢,(7C1) “10. 0.2886
B 142132
-

NOTE For cracks beginning as quarter-circuiar corner cracks in
contigurations 32 through 702, multiply the
through-crack solution by@'%

S
+ * ‘ Limitations:
+ a c ’:2 ;éla(e bending
t
_L / | Numencal Example (c)
Section B-B a2 ¢ -2 r=1,1=3, §= 1Ky = 2.18834
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